• Title, Summary, Keyword: Liquid fertilizer

Search Result 357, Processing Time 0.048 seconds

Effects of Mixed Application of Chemical Fertilizer and Liquid Swine Manure on Agronomic Characteristics, Yield and Feed Value of Sorghum × Sudangrass Hybrid for Silage in Paddy Field Cultivation

  • Hwang, Joo Hwan;Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • This study was conducted to investigate the influence of the mixed application of chemical fertilizer (CF) and liquid swine manure (LSM) on the agronomic characteristics, dry matter yield, amino acids, minerals, and free sugars in cultivating Sorghum ${\times}$ Sudangrass hybrid (SSH) on paddy soil. The field experiment was designed in a randomized block design with three replications and consisted of CF 100% (C), CF 70% + LSM 30% (T1), CF 50% + LSM 50% (T2), CF 30% + LSM 70% (T3), and LSM 100% treatment (T4). The application of LSM was based solely on the nitrogen. Plant length, leaf length, leaf width and number of leaf were significantly higher in T4 (p<0.05), but stem diameter did not show significant differences among treatments. Stem hardness increased significantly (p<0.05) as the LSM application rate decreased, but sugar degree decreased significantly (p<0.05) as the LSM application rate decreased. Fresh yield, dry matter yield and TDN yield were the highest in T4, whereas the lowest in T2 (p<0.05). Crude protein, crude fat and crude ash were the highest in C, T4 and T2, respectively (p<0.05). However, NDF and ADF did not show significant difference among treatments. Crude fiber decreased significantly (p<0.05) as the LSM application rate increased. The total mineral content was decreased significantly (p<0.05) as the LSM application rate increased. Total amino acid content was higher in the order of T1> C> T3> T4> T2 (p<0.05). Free sugar content increased significantly (p<0.05) as the LSM application rate increased. The analysis of all the above results suggests that the application of liquid swine manure is very effective, considering the yield performance and the content of sugar degree and free sugar. In addition, liquid swine manure may be possible to grow Sorghum ${\times}$ Sudangrass hybrid without chemical fertilizer.

Effects of Green Manures and Complemental Fertilization on Growth and Nitrogen Use Efficiency of Chinese Cabbages Cultivated in Organic Systems (녹비작물과 추비방법이 유기재배 배추의 생육과 질소 이용효율에 미치는 영향)

  • Cho, Jung-Lai;An, Nan-Hee;Nam, Hong-Sik;Lee, Sang-Min
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.731-743
    • /
    • 2018
  • This study was conducted to evaluate the effects of green manures and complemental fertilization with oil cake or liquid fertilizer on growth and nitrogen use efficiency of Chinese cabbage cultivated in organi systems. Field experiments were carried out at the National Institute of Agricultural Science in Suwon, South Korea from 2012 to 2014. Two green manure crops, Crotalaria and Hairy vetch, was cultivated in summer and in winter, respectively. The application methods of the green manure consisted of three tillage systems (overall tillage, partial tillage and no tillage). Oil cake and liquid fertilizer were used as complemental fertilizer. The results showed that when used as covering material in the upland soil without tillage, green manure fertilization was more effective in increasing growth and yield of Chinese cabbage than when incorporated into soil. It was possible to grow and harvest Chinese cabbage in the spring season by the application of hairy vetch as winter green manure. The higher yield of Chinese cabbage with green manure application was caused by the lower incidence rate of soft rot and tip-burn. The yield of the Chines cabbage that received green manure applications over two consecutive seasons followed by the supplemental fertilization with oil cake was similar to that of the conventional chemical fertilization. Following a single season green manure application in summer, however, the yield of cabbage was only about 70% of the conventional treatment. Green manure cultivation with additional liquid fertilization produced a yield similar to the conventional fertilization treatment, soil inorganic nitrogen concentration remained stable and the nitrogen use efficiency increased in the green manure applied soil. In conclusion, the organic cultivation of Chinese cabbage in the autumn season could be outperformed in the upland soil receiving two seasons (winter and summer) of green manure fertilization followed by the supplemental fertilization with liquid fertilizer.

Assessment of Aerobic Stabilized Waste Sludge as Liquid Fertilizer and Its Safety (슬러지 액비의 비효효과 및 안전성 평가)

  • Lee, Young-Ok;Hwang, Jin-Gyu;Hwang, Eung-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.314-322
    • /
    • 2008
  • This study was carried out to assess aerobic stabilized waste sludge as liquid fertilizer for the growth of cucumber, cabbage and chrysanthemum. Sludge was pretreated with NaOH(40 meq/L) at 40$^{\circ}C$ for 330 min. The number of fecal coliforms in batch test sludge fertilizer was more efficiently reduced than those in continuous one, maybe due to longer SRT. All produced fertilizer belonged to class B according to US EPA requirement at least. Among 6 heavy metals regulated in Korea, As, Cd and Hg were not detectable in plant amended with fertilizer whereas the concentration of Cr, Cu and Pb in plant was less than 10 mg/kg dw. However, Zn and Ni, which were restricted in other country, but not in Korea, were detected in most amount of 118 mg/kg and 15.7 mg/kg, respectively. Furthermore, based on dry weight of plant, digested sludge(5.4 mg, dw) functioned as better fertilizer rather than activated sludge (4.3 mg, dw), much more fertile when those sludge was pretreated(1.24 mg, dw) compared to untreated one(1.12 mg, dw). But its fertility was 60$\sim$80% of commercial fertilizer and accumulation of Zn, Ti and Cr in plant was founded. Therefore, it could be concluded that sludge-fertilizer can be used for flower unlimitedly, but for edible plant limitedly as additive fertilizer.

Effect of Chemical Fertilizer and Liquid Manure Application on the Growth Characteristics and Feed Value of Corn for Silage and NO3 of Soil (화학비료와 액상분뇨 시용이 사일리지용 옥수수의 생육특성, 사료가치 및 토양의 NO3에 미치는 영향)

  • Lee, Sang-Moo;Jeon, Byung-Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.237-244
    • /
    • 2004
  • This experiment was carried out to determine the growth characteristics, dry matter and TDN yield of corn for silage (Zea mays L.), soil nitrate in infiltration water by chemical fertilizer and different manure application(C; chemical fertilizer + chemical fertilizer, T1; Lime +chemical fertilizer + chemical fertilizer, T2; swine manure + swine manure, T3; Lime + swine manure + swine manure, T4; swine manure +chemical fertilizer). The results obtained are summarizes as follows; The mean growth characteristics of T3 treatment(soil treatment: lime + base fertilizer: liquid manure + additional fertilizer: chemical fertilizer) was higher than those of other treatments. The highest yield of dry matter and TDN was obtained in T3 treatment with 18,611 and 13,746 kg/ha, respectively(P<0.05), and the lowest in T1 treatment with 13,529 and 9,541 kg/ha, respectively(P<0.05). The contents of NDF and ADF were not significant different among treatments. However, NDF and ADF content among treatments were the highest with T1 treatment and the lowest with T3 treatment. $NO_3$ level of soil was hardly influenced by the different manure application treatment, and not affected during the experiment time.

Monitoring of Microorganisms in Commercial Liquid Pig Manures in Korea (국내 유통 돈분 액비의 미생물 함량 모니터링)

  • Lim, Seong-Mook;Lee, Ji-Ho;Go, Woo-Ri;Kunhikrishnan, Anitha;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1181-1184
    • /
    • 2011
  • Total aerobic bacteria, Esherichia coli O157:H7, and Salmonella spp. were examined in commercial liquid pig manures. Commercial liquid pig manures (n=33) were collected from muck joint resource recovery plant at April, June, August, October 2009, Korea. Total aerobic bacteria were incubated at $37^{\circ}C$ for 24-48 hrs, and quantified as a colony-forming unit (CFU) $mL^{-1}$. Analysis of Esherichia coli O157:H7 and Salmonella spp. were followed by Korean Food Standards Codex method. Colony of Salmonella spp. was confirmed by API kit and real time polymerase chain reaction (PCR). Total aerobic bacteria isolated from fermented commercial liquid pig manures ranged from 2.8 to $24.3{\times}10^4\;CFU\;mL^{-1}$. Esherichia coli O157:H7 was not detected, and Salmonella spp. showed the low detection frequency at only 1 sample. This study suggests that continuous monitoring in commercial liquid pig manures is required to improve the agricultural food through management of agricultural land contaminated with liquid pig manures.

The Effect of SCB(Slurry Compost ion and Biofilter) Liquid Fertilizer on Growth of Creeping Bentgrasss (저농도 SCB액비의 시용이 크리핑벤트그래스의 생육에 미치는 영향)

  • Ham, Suon-Kyu;Kim, Young-Sun;Kim, Tack-Soo;Kim, Ki-Sun;Park, Chi-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.91-100
    • /
    • 2009
  • In regional nutrient quota system, livestock manure was applied as liquid fertilizer after slurry composting and biofiltration (SCB) process. This study was conducted to evaluate the effect of SCB liquid fertilizer on turfgrass growth in golf course during 6 month period from May to October in 2008. Fertilizer treatment was designed as follows; non-fertilizer (NF), control (CF; compound fertilizer), S-1 (1L SCB${\cdot}m^{-2}$) and S-2 (2L SCB${\cdot}m^{-2}$). Every treatment was arranged in a randomized complete block design with three replications. In creeping bentgrass, turf color index, chlorophyll content, and dry weight were measured. Results were as follows; A seasonal change pattern of turf grass quality in all treatment increased in April $\sim$ June and September $\sim$ October, whereas it decreased in July $\sim$ August. As compared with NF, turf color index of CF, S-1 and S-2 increased by 1.8%, 1.8%, and 3.3%, respectively and chlorophyll content by 13%, 14%, and 20%, respectively. Dry weight of CF, S-1, and S-2 was higher than that of NFl by 7.7%, 18.2%, and 18.1%, respectively. For turf color index, chlorophyll content, and dry weigh, S-2 showed the best effect, followed by S-1 and CF in creeping bentgrass. These results indicated that the SCB application improves turf growth and quality.

Effect of Mixed Liquid Fertilization on Growth Responses of Red peppers and Soil Chemical Properties

  • Park, Ji-Suk;Lee, Min-Jin;Lee, Seo-Youn;Kim, Jong-Sung;Lee, Tae-Kyu;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.225-232
    • /
    • 2015
  • We evaluated the effect of mixed liquid fertilizer (MLF) on growth responses of plants and soil chemical properties. A pot experiment with red pepper (Capsicum annuum L.) using loam soil was conducted for 81 days in a temperature-controlled glasshouse, and four N fertilization treatments were laid out in a completely randomized design with three replicates: control (C), chemical fertilizer treatment (CF), and two rates (MLF-0.5 and MLF-1.0) of MLF treatment. Soils were periodically sampled and analyzed for pH, EC(Electrical Conductivity), total N, inorganic N and total C, and some growth characteristics of red peppers were measured. During the experimental periods, the pH of MLF soils was higher than that of CF soils. Soil EC increased right after application of CF or MLF, and the intial increase persisted in CF and MLF soils at the end of experiment. Soil total-N increased right after application of CF or MLF, and this initial increase persisted only in MLF-1.0 soils. Soil inorganic N content initially increased in CF or MLF-1.0 soils, but the initial increase disappeared in 56 days after transplanting. Soil total-C was maintained higher in MLF-1.0 soils and lower in CF soils than in control soils, and the intial increase in MLF-1.0 soils finally disappeared to the level of control soils. Plant height, dry weight of plant organs (shoots, roots and fruit), and the number, diameter and length of red pepper fruits were greatest in CF plants. On the other hand, the effect of MLF-application was different depending on the rate of application. However, no consistent effect of N treatments on some major elements of the organs of red peppers was observed. The amounts of N taken up by plants were 1.3 g for CF, 0.8 g for MLF-1.0, 0.5 g for MLF-0.5 and 0.4 g for control treatments. The results of this study showed that mixed liquid fertilizer (MLF) could appropriately serve as an alternative to chemical N fertilizer in red pepper cultivation.

Soil Adsorption Characteristics of Heavy Metals and Antibiotics in Piggery Waste Fertilizer (양돈 퇴, 액비 내 중금속 및 항생제의 토양 흡착특성 연구)

  • Oa, Seong Wook
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.365-374
    • /
    • 2012
  • Due to the wide use of feed additives on pig farms, large content of heavy metals and antibiotics have been found in piggery wastes. More than 90 % of piggery wastes were applied to crop field in Korea. The metals and antibiotics originated from piggery waste in the soil may affect plant growth and human health. To examine the adsorption capacity and residual ratio of heavy metals and antibiotics to the soil, a couple of jar test and leaching tests were conducted. While 86.4 % of zinc and 68% of copper applied were adsorbed to soil particles, while over than 60% of antibiotics in pig manure liquid fertilizer were leaked out to effluent.

Forward Osmosis Based Seawater Desalination using Liquid Fertilizer as Draw Solution (액상 비료를 유도 용액으로 사용하는 정삼투 기반의 해수 담수화)

  • Park, Seong-Jik;An, Hee-Kyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The present study explored the way to desalinate seawater for agricultural irrigation using forward osmosis (FO) process using liquid fertilizer as draw solution. FO experiments were performed in a cross flow mode using flat sheet FO membrane. The effect of membrane orientation, flow rate, and draw solution concentration on the performance of forward osmosis was investigated by measuring water flux of forward osmosis membrane. The water flux when the draw solution was placed against the membrane active layer was lower than the water flux when the feed solution was placed against the membrane active layer. This results indicated that the decrease of effective osmotic pressure by dilutive internal concentration polarization was less than that by concentrative internal concentration polarization. Increasing flow rate from 66.7 to 133.1 $cm^3$/min resulted in increase of the water flux when the membrane active layer orient to draw solution and feed solution, respectively. The reduction of resistance to water flow increased water flux at higher flow rate. The water flux of FO membrane increased with increasing draw solution concentration from 10000 to 30000 mg/L. The water flux for $KH_2PO_4$ draw solution was similar to that for commercial fertilizer. Optimization of FO process would contribute to economically desalinate brackish water for agricultural use.

Variations of N2O by no tillage and conventional-tillage practices under the different kinds of fertilizer applications on the cultivation of soybean in Korea

  • Yoo, Jin;Oh, Eun-Ji;Kim, Suk-Jin;Woo, Sun-Hee;Chung, Keun-Yook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • /
    • pp.314-314
    • /
    • 2017
  • Anthropogenic activities have increased the concentrations of greenhouse gases, such as $CO_2$, $CH_4$, $N_2O$, HFCs, $SF_6$, and PFCs, in the atmosphere. Among others, $N_2O$ is well known as an important greenhouse gas accounting for 7.9% of the total greenhouse effect and the effect of its emission is 310 times greater than that of $CO_2$. Agricultural $N_2O$ emissions are now thought to contribute to about 60% of the global anthropogenic $N_2O$ emission, which have been increased primarily due to fertilizer N consumption and manure management. Therefore, the reduction of $N_2O$ emissions in agriculture is being required. This study was conducted to determine the variation of $N_2O$ emissions by no-tillage (NT) and conventional tillage (CT) practices in the cultivation of soybean from the sandy loam soils under the different kinds of fertilizer treatments June through September 2016 in Cheong-ju, Republic of Korea. An experimental plot, located in the temperate climate zone, was composed of two main plots that were NT and CT, and were divided into four plots, respectively, in accordance with types of fertilizers (chemical fertilizer, liquid pig manure, hairy vetch and non-fertilizer). Among all the treatments, $N_2O$ emission was the highest in August and the lowest in June. When $N_2O$ emissions were evaluated during the growing season (June to September) in all fertilizer treatments, NT with hairy vetch treatment emitted the highest $N_2O$ emission in August, whereas, $N_2O$ emissions was the lowest in NT with non-fertilizer treatment in June, respectively (p = 0.05). Based on the cumulative amount of $N_2O$ emissions during the growing season of soybean, NT had lower $N_2O$ emission than CT by 0.01 - 0.02 kg $N_2O$, although NT had higher $N_2O$ emission than CT by 0.03 kg $N_2O$ in only the chemical fertilizer treatments. As a result, it seems that the applications of liquid pig manure and hairy vetch rather than chemical fertilizer could decrease the $N_2O$ emission in NT, compared to CT.

  • PDF