• Title, Summary, Keyword: Lipopolysaccharide

Search Result 2,024, Processing Time 0.051 seconds

Neuroprotective Effect of Cirsium japonicum and Silibinin on Lipopolysaccharide-induced Inflammation in BV2 Microglial Cells (대계와 실리비닌의 Mouse BV2 Microglial Cells에서 Lipopolysaccharide에 의해 유발된 염증반응에 대한 신경보호 효과)

  • Yeo, Hyun-Soo;Kim, Dong-Woo;Jun, Chan-Yong;Choi, You-Kyung;Park, Chong-Hyeong
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.166-175
    • /
    • 2007
  • Objectives : This study was designed to evaluate the neuroprotective effect of Cirsium japonicum and Silibinin on lipopolysaccharide-induced inflammation in BV2 microglial cells. Methods : We studied on the neuroprotective effect of lipopolysaccharide-induced inflammation using MTS assay, western blot, and nitric oxide detection on mouse BV2 microglial cells. Results : Cirsium japonicum dose-dependently (50${\mu}g/ml$${\sim}$$250{\mu}g/ml$) inhibited nitrite production and iNOS expression in lipopolysaccharide-induced BV2 microglia and also significantly reduced lipopolysaccharide-induced COX-2 activation in western blot. Silibinin dose-dependently (10${\mu}M$${\sim}$$100{\mu}M$) inhibited nitrite production and iNOS expression in lipopolysaccharide-induced BV2 microglial cells. Silibinin also significantly reduced lipopolysaccharide-induced COX-2 activation in western blot. Conclusion : These effects of neuroprotection related to anti-inflammation suggest that Cirsium japonicum and Silibininmay be useful candidates for the development of a drug for related neurodegenerative diseases.

  • PDF

Effect of Erythromycin on Basal and Stimulated Mucin Release from Cultured Hamster Tracheal Surface Epthelial Cells

  • Park, Ji-Sun;Seok, Jeong-Ho;Hur, Gang-Min;Lee, Jae-Heun;Park, Kyeung-A;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.57-61
    • /
    • 2004
  • In the present study, we investigated whether lipopolysaccharide induce mucin release and erythro-mycin affect basal and adenosine triphosphate-induced (stimulated mucin release, from airway goblet cells. Confluent primary hamster tracheal surface epithelial cells were metabolically radiolabeled and chased for 30 min or 24 hr in the presence of varying concentrations of lipopolysaccharide or erythromycin to assess the effects on $^3H$-mucin release. The results were as follows : 1) Lipopolysaccharide failed to induce mucin release, 2) Erythromycin showed no effect on both basal and stimulated mucin release during 30 min of 24 hr treatment period. We conclude that lipopolysaccharide and erythromycin can not affect mucin release by direct acting on airway mucin-secreting cells.

Harpagophytum Procumbens Suppresses Lipopolysaccharide Induced Expressions of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in Mouse BV2 Microglial Cells

  • Cho, Hyun-Chol;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.152-161
    • /
    • 2005
  • The excessive release of proinflammatory products by activated microglia causes neurotoxicity, and this has been implicated in the pathogenesis of neurodegenerative diseases. Harpagophytum procumbens (Pedaliaceae) has been widely used for the treatment of pain and arthritis in the clinical field. In this study, we investigated the effect of Harpagophytum procumbens against lipopolysaccharide-induced inflammation. From the present results, the aqueous extract of Harpagophytum procumbens was shown to suppress prostaglandin-E2 synthesis and nitric oxide production by inhibiting the lipopolysaccharide-stimulated enhancement of cyclooxygenase-2 and inducible nitric oxide synthase expressions in mouse BV2 microglial cells. These results suggest that Harpagophytum procumbens may offer a valuable means of therapy for the treatment of brain inflammatory diseases by attenuating lipopolysaccharide-induced prostaglandin-E2 synthesis and nitric oxide production.

  • PDF

Clematis chinensis suppresses lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 in mouse BV2 microglial cells

  • Chun, Hae-Jin;Lee, Choong-Yeol;Lee, Jin-Woo;Sung, Yun-Hee;Kim, Sung-Eun;Kim, Young-Sick;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Hye-Jung;Kim, Dong-Hee
    • Oriental Pharmacy and Experimental Medicine
    • /
    • v.10 no.3
    • /
    • pp.214-221
    • /
    • 2010
  • Clematis chinensis is the root of Clematis chinensis OSBECK and is classified in Ranunculaceae. Clematis chinensis is a traditional medicinal herb possesses analgesic, diuretic, anti-tumorigenic, and anti-inflammatory effects. In this study, the effect of aqueous extract of Clematis chinensis against lipopolysaccharide-induced inflammation was investigated in mouse BV2 microglial cells. The aqueous extract of Clematis chinensis at the respective concentration was treated one hour before the lipopolysaccharide treatment in mouse BV2 microglial cells. From the present results, pre-treatment with the aqueous extract of Clematis chinensis suppressed prostaglandin E2 synthesis and nitric oxide production by inhibiting on the lipopolysaccharide-stimulated cyclooxygenase-2 and inducible nitric oxide synthase expressions in mouse BV2 microglial cells. The present study suggests that Clematis chinensis may offer a valuable mean of therapy for brain inflammatory diseases.

Septicine Inhibits the Production of Inflammatory Mediators in Lipopolysaccharide-Stimulated Murine Macrophages (Lipopolysaccharide에 의한 RAW264.7 세포의 염증매개물질 생성에 대한 Septicine의 저해 활성)

  • Park, Geun-Mook;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1310-1314
    • /
    • 2011
  • Anti-inflammatory activities of septicine, a natural alkaloid product present in the leaves and stems of Tylophora ovata, were evaluated in lipopolysaccharide (LPS)-stimulated murine macrophages, RAW264.7 cells. Treatment with septicine inhibited LPS-induced nitric oxide (NO), inflammatory cytokines, tumor necrosis factor-${\alpha}$ and interleukin-6 production in a concentration-dependant manner. In addition, septicine suppressed the expression of inducible NO synthase. These results suggest that the anti-inflammatory activities of septicine might be attributed to the inhibition of NO, iNOS and cytokine expression.

Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction

  • Guo, Yijie;Fukuda, Tomokazu;Nakamura, Shuichi;Bai, Lanlan;Xu, Jun;Kuroda, Kengo;Tomioka, Rintaro;Yoneyama, Hiroshi;Isogai, Emiko
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.273-279
    • /
    • 2015
  • Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation.

Biological properties of vibrio vulnificus lipopolysaccharide and compared to those of escherichia coli and salmonella typhimurium lipopolysaccharides (Vibrio vulnificus lipopolysaccharide의 생물학적 특성과 escherichia coli 및 salmonella typhimurium의 lipopolysaccharides와의 비교 연구)

  • 김용호;이봉헌;신홍대;강신원
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.147-154
    • /
    • 1989
  • Vibrio vulnificus Lipopolysaccharide (LPS) was extracted, performed chemical analysis, tested its biological activities, and compared to those of Escherichia coli LPS and Salmonella typhimurium LPS. The lethal activity of V. vulnificus LPS was 138.6138.6 mg/kg in mouse, but this was lower than thowe of E. coli LPS (56.3 mg/kg) and S. typhimurium LPS (37.5 mg/kg). The result of fatty acid analysis showed that V. vulnificus LPS had more saturated fatty acid than E. coli LPS and S. typhimurium LPS. Above results indicated that V. vulnificus LPS did not have much effect on the lethality. The results of biological responses of enzymes and blood cells by LPSs showed that V. vulnificus LPS had slightly greater activity than E. coli LPS and S. typhimurium LPS. V. vulnificus LPS was recommendavle for stimulant on interferon induction because of adequate stimulation and safety for host and cell lines.

  • PDF

Effects of Bacterial Lipopolysaccharide on Prostaglandin Production in Primary Cultured Rat Vascular Smooth Muscle Cells (일차 배양 랫드 혈관 평활근 세포에서 Prostaglandin 생성에 미치는 Bacterial Lipopolysaccharide의 작용 특성)

  • 이수환
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.4
    • /
    • pp.227-234
    • /
    • 1996
  • This study was designed to characterize endotoxin-induced prostaglandin production in primary cultured rat vascular smooth muscle cells (VSMC). The time course for prostaglandin synthesis in lipopolysaccharide (LPS)-stimulated VSMC showed that the maximum production was reached in 12 hours. LPS induced prostaglandin H2 synthase (PGHS) activity in VSMC and the time course profile in the changes of PGHS activity paralleled that of total prostaglandin production. Differential treatment showed that 4 hours' exposure to LPS was enough for the maximum effect on the prostaglandin production and this effect was completely inhibited by the co-treatment of actinomycin D, a transcription inhibitor. These results suggest that LPS effect might be determined within 4 hours. Actinomycin D increased PGHS activity without affecting prostaglandin production if added 4 hours after LPS treatment. On the other hand, cyclogeximide, a translation inhibitor, augmented LPS-induced prostaglandin production if treated during first four hours, but it inhibited LPS-induced PGHS activity regardless of treatment schedule. These results suggest the existence of multiple regulating mechanisms in the LPS-induced prostaglandin synthesis.

  • PDF

Anti-Inflammatory Effect of Fermented Liriope platyphylla Extract in LPS-stimulated RAW 264.7 Macrophages

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • The present study was designed to evaluate the inhibitory effects of fermented Liriope platyphylla extract on the production of inflammation-related mediators (NO, ROS, NF-${\kappa}B$, iNOS and COX-2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Freeze-dried Liriope platyphylla was fermented by Saccharomyces cerevisiae and extracted with 70% ethanol. In lipopolysaccharide-stimulated macrophage cells, the treatment with fermented Liriope platyphylla extract decreased the generation of intracellular reactive oxygen species dose-dependently and increased antioxidant enzyme activities, including superoxide dismutase, catalase and glutathione peroxidase. Fermented Liriope platyphylla extract also inhibited NO production in lipopolysaccharide-stimulated RAW 264.7 cell. The expressions of NF-${\kappa}B$, iNOS, COX-2 and pro-inflammatory cytokines were inhibited by the treatment with fermented Liriope platyphylla extract. Thus, this study shows the fermented Liriope platyphylla extract could be effective at inhibiting the inflammation process.

Effect of Artemisiae Argi Folium Fermented with Lactobacillus Pentosus on Viability of Human Hepatocyte Treated with Toxicants (EtOH 등의 독성물질에 대한 유산균발효애엽 추출물의 간세포보호효과)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.457-462
    • /
    • 2010
  • The purpose of this study is to investigate the effect of water extract from Artemisiae Argi Folium Fermented with Lactobacillus pentosus (AFL) on viability of human hepatocyte HepG2 cells treated with hepatotoxicants such as EtOH, gallic acid, nicotine, acetaminophen, acetaldehyde, and lipopolysaccharide. AFL (0~400 ug/mL) was treated with EtOH, gallic acid, nicotine, acetaminophen, acetaldehyde, and lipopolysaccharide. And the viability of HepG2 cells was measured by MTT assay. AFL at the high concentration such as 400 ug/mL showed to increase significantly viabilities of HepG2 cells compared with hepatotoxicants (EtOH, gallic acid, nicotine, acetaminophen, and lipopolysaccharide) only (p<0.05). AFL could be supposed to have the hepatoprotective effect against hepatotoxicants such as gallic acid, EtOH, nicotine, acetaminophen, and lipopolysaccharide at the high concentration.