• Title, Summary, Keyword: Linear motor

Search Result 1,722, Processing Time 0.069 seconds

Fabrication and Operation Characteristics of Linear Ultrasonic Motor (L$_1$-B$_4$모드 선형 초음파 전동기의 제작과 운전 특성)

  • 이명훈;김진수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.257-262
    • /
    • 2001
  • In this paper, a linear ultrasonic motor using piezoelectric ceramics was fabricated, and its operation characteristics were investigated. A linear ultrasonic motor using L$_1$-B$_4$model was composed of a stator and a rotor, and a stator was composed of piezoelectric ceramics and a elastic body. When applied frequency and voltage were 58.4kHz and 56V respectively, the feeding speed of the motor was 19.8 cm/s. A linear ultrasonic motor could be moved in left and right directions by the phase difference. Feeding speed and feeding force of a linear ultrasonic motor could be controlled by applied voltage. A linear ultrasonic motor had a droping torque-speed characteristic. The maximum efficiency of linear ultrasonic motor was 2.14%. Therefore, this linear ultrasonic motor can be expected to be used for a card-forwarding device, such as a card reader device and so on.

  • PDF

Linear Pulse Motor Characteristics Analysis using Non-linear Simulation (비선형 시뮬레이션에 의한 리니어 펄스모터의 특성해석)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.584-587
    • /
    • 1992
  • Because linear motor directly drives linear motion, it does not need conversion equipment such as belt and gear. Especially linear pulse motor provide more precise positioning and large force of linear pulse motors. As current manufacture technic of linear pulse motor is much to be desired at home. This motor lay out to make use of computer aided design program, In this paper the experimental motor is 2-phases 4-poles hybrid pulse motor which has teeth per pole Simulation program is divided its function into 4 parts - air gap permeance analysis, permanent magnet & non-linear core operating point determine, winding configuration, leakage flux analysis. It is possible to make motor static and magnetic characteristics for this simulation program. Also, by varying input parameters of the program, experimental motor is to be compared to motor characteristics.

  • PDF

Dynamic Response of Linear Actuator with the Thrust Force of Transverse Flux Linear Motor (횡자속 선형전동기의 추력특성에 따른 선형액추에이터의 동특성)

  • Woo Byung-Chul;Kang Do-Hyun;Hong Do-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.16-20
    • /
    • 2006
  • The proposed paper presents an integrated linear actuator which combines Transverse Flux Linear Motor(TFLM) for Household elelctric applications. They both use the same primary magnetic circuit, but they have different secondary movers. The paper presents a new design of linear motor for a new electromagnetic linear actuator, an tintegrated TFLM. The calculated tthrust force is good agreement with experiments. We have studied a transient response of a linear actuator with a damping ratio, spring constant and specially a pressed power patterns for a constant stroke control.

Analysis for the Thermal Behavior of Synchronous Linear Motor by EEM (FEM을 이용한 동기식 리니어모터 열특성의 해석)

  • Eun, In-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1461-1471
    • /
    • 2002
  • Linear motor has a lot of advantages in comparison with conventional feed mechanisms: high velocity, high acceleration, good positioning accuracy and a long lifetime. An important disadvantage of linear motor is its high power loss and heating up of motor and neighboring machine components in operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper Finite-Element-Method for the thermal behavior of synchronous linear motor is introduced, which is useful for the design and manufacturing of linear motors. By modeling the linear motor the orthotropic physical properties of the sheet metal and windings were considered and convective coefficient in the water cooler and to the surroundings was defined by analytical and experimental method. The calculated isothermal lines could analyze the heat flow in the linear motor.

A Study on Design of Linear Induction Motor in Dynamic Tester for Catenary-current Collection (주행 집전계 시험기의 주행 대차용 선형 유도전동기 설계에 관한 연구)

  • Ham, Sang-Hwan;Cho, Su-Yeon;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.771-775
    • /
    • 2011
  • This paper presents design process of linear induction motor in dynamic tester for catenary-current collection. To minimize length of rail for dynamic tester for catenary-current collection, accelerating performance of the linear induction motor is very important. So the design process of linear induction motor considered in this paper is different with general design process of linear induction motor, because dynamic tester has three type driving region, as accelerating region, constant speed region, and braking region. Considering accelerating performance of motor, distance and time from starting point to constant speed region were concerned for load condition of motor. Designed linear induction motor was analyzed by 2-dimensional finite element method. Using mechanical dynamics simulation with analysis result of 2-dimensional finite element method and accelerating performance of designed motor was proved.

The Finite Element Analysis and the Optimum Geometric Design of Linear Motor

  • Lee Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.73-77
    • /
    • 2005
  • Linear motor has been considered to be the most suitable electric machine for linear control with high speed and high precision. Thrust of linear motor is one of the important factors to specify motor performance. Maximum thrust can be obtained by increasing the magnitude of current in conductor and is relative to the sizes of conductor and magnet. However, the magnitude of current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find optimum design that can effectively maximize thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiments. The temperature of the conductor was calculated from the experimentally determined thermal resistance. The ADPL of ANSYS was used for the optimum design process, which is commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.

A Study on Heat and Vibration of Nano Precision Linear Motors (나노 구동용 선형 모터의 열.진동에 관한 연구)

  • Kim H.Y.;LEE W.Y.;Rim K.H.;Seol J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.254-259
    • /
    • 2005
  • The heat and vibration effect is known to cause a serious deformation in linear motor system. The paper presents a heat and vibration characteristics that compare a advanced linear motor with developed linear motor through experiment and analyses. The heat in linear motor system is identified for experimental data and analytic data using the Finite Volume Method (FVM). Also, it shows that the optimum standard analyzed the acceleration patterns of the moving part cause the vibration source in linear motor. It presents the analyzed dynamics of linear motor in compliance with a deformation of the non-linear factor.

  • PDF

Comparison between Asynchronous and Synchronous Linear Motors as to Thermal Behavior

  • Eun, In-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.61-68
    • /
    • 2001
  • A linear motor has a lot of advantages in comparison with conventional feed mechanisms: high transitional speed, acceleration, high control performance and good positioning at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has along lifetime and is easy to assemble. Recently, the two types of linear motors, asynchronous and synchronous linear motors, are often applied to machine tools as a fast feed mechanism. In this paper, a comparison between the two types of linear motors as to power loss and thermal behavior is made. The heat sources of the linear motor-the electrical power loss in the motor and the frictional heat on the linear guidance-are measured and compared. Also, the temperature on the linear motor and machine structure is measured and presented.

  • PDF

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

Lambda shape multiway moving ultrasonic linear motor (람다형 다방향 초음파 선형 모터)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.263-265
    • /
    • 2007
  • An ultrasonic linear motor using lambda shape vibrators has been designed and fabricated. The multiway ultrasonic motors mainly consist of an lambda shape ultrasonic vibrator which generates elliptical motions in beat. The lambda shape ultrasonic linear motor use longitudinal and bending vibration mode. In order to high precision motion control and multiway moving, piezoceramics were adhered to lambda shape brass elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, The results have shown that the lambda shape ultrasonic linear motor can be moved multiwav by using the phase control. Close agreement between the FEM results and experimental results obtained for the lambda shape ultrasonic linear motor.

  • PDF