• Title, Summary, Keyword: Li-ion battery

Search Result 606, Processing Time 0.034 seconds

Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation (CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석)

  • SIM, CHANG-HWI;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

The Prospect and Future of Li-ion Battery

  • Lee, Sung-Joon;Jeong, Seung-Hwan;You, Chung-Yeol;Soh, Dea-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.627-628
    • /
    • 2005
  • In recent years, the rapid growth of portable electronic device market requires higher density characteristics of batteries. The speed at which portability and mobility is advancing hinges much on the battery. What is important is this energy source that engineers design handled devices around the battery, rather than the other way around. Much improvement has been made in reducing the power consumption of portable devices. Currently, the most popular secondary battery is Li-ion battery. Li-ion has won the limelight and become the most prominent battery. This paper reviews the prospect and future of the Li-ion battery.

  • PDF

A Single Cell Li-ion Battery Charger (Single Cell Li-ion 전지 충전 IC)

  • Lee, Rock-Hyun;Kim, Jun-Sik;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.27-28
    • /
    • 2009
  • This paper suggests a autonomous linear Li-ion battery charger which can safely distribute power between an external power source(AC adapter, auto adapter, or USB source), battery, and the system load. Depending on an external power source's capability, the charger selects proper charging-mode automatically. The charger IC designed and fabricated on Dongbu HITEC's $0.35{\mu}m$ BCD process with layers of one poly and three metals.

  • PDF

A Study on Explosion and Fire Risk of Lithium-Ion and Lithium-Polymer Battery (리튬이온 및 리튬폴리머 배터리의 폭발과 화재 위험성에 관한 연구)

  • Lee, Bum Joo;Choi, Gyeong Joo;Lee, Sang Ho;Jeong, Yeon Man;Park, Young;Cho, Dong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.855-863
    • /
    • 2017
  • Because Li-ion battery and Li-Polymer battery have high-energy storage density, they are used for various electronic devices such as electronic cigarette, electronic bicycle, drone, second battery, even golf cart and electronic car. Recently, however, battery explosion is sometimes occurring on electronic devices using Li-ion battery and is becoming serious as bodily harm is breaking out due to explosion. For this, this paper described the Li-ion Battery's operating principles and verified the cause of explosion by overload tests caused by the high-energy storage density. According to the these experiments, we conducted a study to develope scanning techniques of fire and safety measures.

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

Characteristics of LiMn2O4 Cathode Material Prepared by Precipitation-Evaporation Method for Li-ion Secondary Battery (침전-증발법에 의해 제조된 리튬이온 2차 전지용 LiMn2O4 양극재료의 특성)

  • Kim, Guk-Tae;Yoon, Duck-Ki;Shim, Young-Jae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.712-717
    • /
    • 2002
  • New wet chemical method so called precipitation-evaporation method was suggested for preparing spinel structure lithium manganese oxide ($LiMn_2$$O_4$) for Li ion secondary battery. Using precipitation-evaporation method, $LiMn_2$$O_4$ cathode materials suitable for Li ion secondary batteries can be synthesized. Single spinel phase $LiMn_2$$O_4$ powder was synthesized at lower temperature compared to that of prepared by solid-state method. $LiMn_2$$O_4$ powder prepared by precipitation-evaporation method showed uniform, small size and well defined crystallinity particles. Li ion secondary battery using $LiMn_2$$O_4$ as cathode materials prepared by precipitation-evaporation method and calcined at $800^{\circ}C$ showed discharge capacity of 106.03mAh/g and discharge capacity of 95.60mAh/g at 10th cycle. Although Li ion secondary battery showed somewhat smaller initial capacity but good cyclic ability. It is suggested that electro-chemical properties can be improved by controlling particle characteristics by particle morphology modification during calcination and optimizing Li ion secondary battery assembly conditions.

State of Charge Estimation of Li-Ion Battery Based on CIM and OCV Using Extended Kalman Filter (전류적산법과 OCV 방법을 결합한 Li-Ion 배터리의 충전상태 추정)

  • Park, Joung-Ho;Cha, Wang-Cheol;Cho, Uk-Rae;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.77-83
    • /
    • 2014
  • The Estimation of State of Charge(SOC) for batteries is an important aspect of a Battery Management System(BMS). A method for estimating the SOC is proposed in order to overcome the individual disadvantages of the current integral and Open Circuit Voltage(OCV) estimation methods by combining them using Extended Kalman filter(EKF). The non-linear characteristics of the Li-Ion RC battery model used in this study is also solved through EKF. The proposed method is simulated in a Matlab environment with a Li-Ion Kokam battery (3.7V, 1,500mAh). Results showed that there is an improvement in the estimation error when using the proposed model compared to the conventional current integral method.

A Novel Model of a Li-ion Battery Based on the Manufacturer's Datasheet

  • Zhang, Xiaoqiang;Zhang, Weiping;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.237-245
    • /
    • 2017
  • A novel battery model based on the manufacturer datasheet is proposed. According to this model, not only the steady state but also the dynamic charging performance of the Li-ion battery can be analyzed and evaluated. The major advantage of our model is that all the parameters can be directly obtained from the datasheet and no additional experiments are required. Moreover, the transition between charge and discharge stages was analyzed based on our model, and a novel Simulink module was built to predict the energy consumption of a battery-powered system. Experiments were carried out to verify the model accuracy. Although the new model was developed for the Li-ion battery, it is expected to be applicable to other batteries.

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode (첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.