• Title, Summary, Keyword: Large early release frequency

Search Result 9, Processing Time 0.045 seconds

A STUDY ON METHODOLOGY FOR IDENTIFYING CORRELATIONS BETWEEN LERF AND EARLY FATALITY

  • Kang, Kyungmin;Jae, Moosung;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.745-754
    • /
    • 2012
  • The correlations between Large Early Release Frequency (LERF) and Early Fatality need to be investigated for risk-informed application and regulation. In Regulatory Guide (RG) -1.174, while there are decision-making criteria using the measures of Core Damage Frequency (CDF) and LERF, there are no specific criteria on LERF. Since there are both huge uncertainties and large costs needed in off-site consequence calculation, a LERF assessment methodology needs to be developed, and its correlation factor needs to be identified, for risk-informed decision-making. A new method for estimating off-site consequence has been presented and performed for assessing health effects caused by radioisotopes released from severe accidents of nuclear power plants in this study. The MACCS2 code is used for validating the source term quantitatively regarding health effects, depending on the release characteristics of radioisotopes during severe accidents. This study developed a method for identifying correlations between LERF and Early Fatality and validates the results of the model using the MACCS2 code. The results of this study may contribute to defining LERF and finding a measure for risk-informed regulations and risk-informed decision-making.

Consistency issues in quantitative safety goals of nuclear power plants in Korea

  • Kim, Ji Suk;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1758-1764
    • /
    • 2019
  • As the safety level of nuclear power plants (NPPs) relates to the safety of individuals, society, and the environment, it is important to establish NPP safety goals. In Korea, two quantitative health objectives and one large release frequency (LRF) criterion were formally set as quantitative safety goals for NPPs by the Nuclear Safety and Security Commission in 2016. The risks of prompt and cancer fatalities from NPPs should be less than 0.1% of the overall risk, and the frequency of nuclear accidents releasing more than 100 TBq of Cs-137 should not exceed 1E-06 per reactor year. This paper reviews the hierarchical structure of safety goals in Korea, its relationship with those of other countries, and the relationships among safety goals and subsidiary criteria like core damage frequency and large early release frequency. By analyzing the effect of the release of 100 TBq of Cs-137 via consequence analysis codes in eight different accident scenarios, it was shown that meeting the LRF criterion results in negligible prompt fatalities in the surrounding area. Hence, the LRF criterion dominates the safety goals for Korean NPPs. Safety goals must be consistent with national policy, international standards, and the goals of other counties.

Integrated Level 1-Level 2 decommissioning probabilistic risk assessment for boiling water reactors

  • Mercurio, Davide;Andersen, Vincent M.;Wagner, Kenneth C.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.627-638
    • /
    • 2018
  • This article describes an integrated Level 1-Level 2 probabilistic risk assessment (PRA) methodology to evaluate the radiological risk during postulated accident scenarios initiated during the decommissioning phase of a typical Mark I containment boiling water reactor. The fuel damage scenarios include those initiated while the reactor is permanently shut down, defueled, and the spent fuel is located into the spent fuel storage pool. This article focuses on the integrated Level 1-Level 2 PRA aspects of the analysis, from the beginning of the accident to the radiological release into the environment. The integrated Level 1-Level 2 decommissioning PRA uses event trees and fault trees that assess the accident progression until and after fuel damage. Detailed deterministic severe accident analyses are performed to support the fault tree/event tree development and to provide source term information for the various pieces of the Level 1-Level 2 model. Source terms information is collected from accidents occurring in both the reactor pressure vessel and the spent fuel pool, including simultaneous accidents. The Level 1-Level 2 PRA model evaluates the temporal and physical changes in plant conditions including consideration of major uncertainties. The goal of this article is to provide a methodology framework to perform a decommissioning Probabilistic Risk Assessment (PRA), and an application to a real case study is provided to show the use of the methodology. Results will be derived from the integrated Level 1-Level 2 decommissioning PSA event tree in terms of fuel damage frequency, large release frequency, and large early release frequency, including uncertainties.

Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant

  • Zvoncek, Pavol;Nusbaumer, Olivier;Torri, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.426-433
    • /
    • 2017
  • This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of $3600MW_{th}/1200MW_e$, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importances of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities).

Assessment on Plant-Specific PSA for Power Uprates of Westing-House Type Nuclear Power Plants in Korea (국내 WH형원전의 출력증강에 따른 PSA 영향평가)

  • Lee, Keun-Sung;Lim, Hyuk-Soon;Lee, Eun-Chan
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.3464-3466
    • /
    • 2007
  • Power uprate is the process of increasing the maximum power level at which a commercial nuclear power plant may operate. Power uprate applications(113 units) for NPPs(Nuclear Power Plants) were recently approved in the United States. Utilities have been using power uprates since the 1970s as a way of increasing the power output of their nuclear plants. To increase the power output of a reactor, typically more highly enriched uranium fuel and/or more fresh fuel is used. This enables the reactor to produce more thermal energy and therefore more steam, driving a turbine generator to produce electricity. In this paper, the propriety of power uprate is explained through the review on the power uprate method and the changes of the physical parameters due to power uprate. The analysis results showed that the CDF(Core Damage Frequency) and LERF(Large Early Release Frequency) are affected in the current probabilistic safety assessment (PSA) model.

  • PDF

Multi-unit Level 2 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Cho, Jaehyun;Han, Sang Hoon;Kim, Dong-San;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1234-1245
    • /
    • 2018
  • The risk of multi-unit nuclear power plants (NPPs) at a site has received considerable critical attention recently. However, current probabilistic safety assessment (PSA) procedures and computer code do not support multi-unit PSA because the traditional PSA structure is mostly used for the quantification of single-unit NPP risk. In this study, the main purpose is to develop a multi-unit Level 2 PSA method and apply it to full-power operating six-unit OPR1000. Multi-unit Level 2 PSA method consists of three steps: (1) development of single-unit Level 2 PSA; (2) extracting the mapping data from plant damage state to source term category; and (3) combining multi-unit Level 1 PSA results and mapping fractions. By applying developed multi-unit Level 2 PSA method into six-unit OPR1000, site containment failure probabilities in case of loss of ultimate heat sink, loss of off-site power, tsunami, and seismic event were quantified.

Application of Risk-Informed Methods to In-Service Piping Inspection in Framatome Type Nuclear Power Plants (프라마톰형 원전의 배관 가동중검사에 리스크 정보를 활용한 기법 적용)

  • Kim, Jin-Hoi;Lee, Jeong-Seok;Yun, Eun-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2014
  • The Pressurized water reactor owners group (PWROG) developed and applied a risk-informed in-service inspection (RI-ISI) program, as an alternative to the existing ASME Section XI' sampling inspection method. The RI-ISI programs enhance overall safety by focusing inspections of piping at high safety significance (HSS) locations where failure mechanisms are likely to be present. Additionally, the RI-ISI program can reduce nondestructive evaluation (NDE) exams, man-rem exposure for inspectors, and inspection time, among other benefits. The RI-ISI method of in-service piping inspection was applied to 3 units (KSNPs: Korea standard nuclear power plants) and is being deployed to the other units. In this paper, the results of RI-ISI for a Framatome type (France CPI) nuclear power plant are presented. It was concluded that application of RI-ISI to the plant could enhance and maintain plant safety, as well as provide the benefits of greater reliability.