• Title, Summary, Keyword: Keyword Spotting

Search Result 37, Processing Time 0.035 seconds

Improvement of Keyword Spotting Performance Using Normalized Confidence Measure (정규화 신뢰도를 이용한 핵심어 검출 성능향상)

  • Kim, Cheol;Lee, Kyoung-Rok;Kim, Jin-Young;Choi, Seung-Ho;Choi, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.380-386
    • /
    • 2002
  • Conventional post-processing as like confidence measure (CM) proposed by Rahim calculates phones' CM using the likelihood between phoneme model and anti-model, and then word's CM is obtained by averaging phone-level CMs[1]. In conventional method, CMs of some specific keywords are tory low and they are usually rejected. The reason is that statistics of phone-level CMs are not consistent. In other words, phone-level CMs have different probability density functions (pdf) for each phone, especially sri-phone. To overcome this problem, in this paper, we propose normalized confidence measure. Our approach is to transform CM pdf of each tri-phone to the same pdf under the assumption that CM pdfs are Gaussian. For evaluating our method we use common keyword spotting system. In that system context-dependent HMM models are used for modeling keyword utterance and contort-independent HMM models are applied to non-keyword utterance. The experiment results show that the proposed NCM reduced FAR (false alarm rate) from 0.44 to 0.33 FA/KW/HR (false alarm/keyword/hour) when MDR is about 8%. It achieves 25% improvement of FAR.

Improvement of Domain-specific Keyword Spotting Performance Using Hybrid Confidence Measure (하이브리드 신뢰도를 이용한 제한 영역 핵심어 검출 성능향상)

  • 이경록;서현철;최승호;최승호;김진영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.632-640
    • /
    • 2002
  • In this paper, we proposed ACM (Anti-filler confidence measure) to compensate shortcoming of conventional RLJ-CM (RLJ-CM) and NCM (normalized CM), and integrated proposed ACM and conventional NCM using HCM (hybrid CM). Proposed ACM analyzes that FA (false acceptance) happens by the construction method of anti-phone model, and presumed phoneme sequence in actuality using phoneme recognizer to compensate this. We defined this as anti-phone model and used in confidence measure calculation. Analyzing feature of two confidences measure, conventional NCM shows good performance to FR (false rejection) and proposed ACM shows good performance in FA. This shows that feature of each other are complementary. Use these feature, we integrated two confidence measures using weighting vector α And defined this as HCM. In MDR (missed detection rate) 10% neighborhood, HCM is 0.219 FA/KW/HR (false alarm/keyword/hour). This is that Performance improves 22% than used conventional NCM individually.

A Study on Out-of-Vocabulary Rejection Algorithms using Variable Confidence Thresholds (가변 신뢰도 문턱치를 사용한 미등록어 거절 알고리즘에 대한 연구)

  • Bhang, Ki-Duck;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1471-1479
    • /
    • 2008
  • In this paper, we propose a technique to improve Out-Of-Vocabulary(OOV) rejection algorithms in variable vocabulary recognition system which is much used in ASR(Automatic Speech Recognition). The rejection system can be classified into two categories by their implementation method, keyword spotting method and utterance verification method. The utterance verification method uses the likelihood ratio of each phoneme Viterbi score relative to anti-phoneme score for deciding OOV. In this paper, we add speaker verification system before utterance verification and calculate an speaker verification probability. The obtained speaker verification probability is applied for determining the proposed variable-confidence threshold. Using the proposed method, we achieve the significant performance improvement; CA(Correctly Accepted for keyword) 94.23%, CR(Correctly Rejected for out-of-vocabulary) 95.11% in office environment, and CA 91.14%, CR 92.74% in noisy environment.

  • PDF

Development of Voice Dialing System based on Keyword Spotting Technique (핵심어 추출 기반 음성 다이얼링 시스템 개발)

  • Park, Jeon-Gue;Suh, Sang-Weon;Han, Mun-Sung
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.153-157
    • /
    • 1996
  • 본 논문은 연속 분포 HMM을 사용한 핵심어 추출기법(Keyword Spotting)과 화자 인식에 기반한 음성 다이얼링 및 부서 안내에 관한 것이다. 개발된 시스템은 상대방의 이름, 직책, 존칭 등에 감탄사나 명령어 등이 혼합된 형태의 자연스런 음성 문장으로부터 다이얼링과 안내에 필요한 핵심어를 자동 추출하고 있다. 핵심 단어의 사용에는 자연성을 고려하여 문법적 제약을 최소한으로 두었으며, 각 단어 모델에 대해서는 음소의 갯수 더하기 $3{\sim}4$개의 상태 수와 3개 정도의 mixture component로써 좌우향 모델을, 묵음모델에 대해서는 2개 상태의 ergodic형 모델을 구성하였다. 인식에 있어서는 프레임 동기 One-Pass 비터비 알고리즘과 beam pruning을 채택하였으며, 인식에 사용된 어휘는 36개의 성명, 8개의 직위 및 존칭, 5개 정도의 호출어, 부탁을 나타내는 동사 및 그 활용이 10개 정도이다. 약 $3{\sim}6$개 정도의 단어로 구성된 문장을 실시간($1{\sim}3$초이내)에 인식하고, 약 98% 정도의 핵심어 인식 성능을 나타내고 있다.

  • PDF

A Study of Fundamental Frequency for Focused Word Spotting in Spoken Korean (한국어 발화음성에서 중점단어 탐색을 위한 기본주파수에 대한 연구)

  • Kwon, Soon-Il;Park, Ji-Hyung;Park, Neung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.595-602
    • /
    • 2008
  • The focused word of each sentence is a help in recognizing and understanding spoken Korean. To find the method of focused word spotting at spoken speech signal, we made an analysis of the average and variance of Fundamental Frequency and the average energy extracted from a focused word and the other words in a sentence by experiments with the speech data from 100 spoken sentences. The result showed that focused words have either higher relative average F0 or higher relative variances of F0 than other words. Our findings are to make a contribution to getting prosodic characteristics of spoken Korean and keyword extraction based on natural language processing.

A Study on the Rejection Capability Based on Anti-phone Modeling (반음소 모델링을 이용한 거절기능에 대한 연구)

  • 김우성;구명완
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.3-9
    • /
    • 1999
  • This paper presents the study on the rejection capability based on anti-phone modeling for vocabulary independent speech recognition system. The rejection system detects and rejects out-of-vocabulary words which were not included in candidate words which are defined while the speech recognizer is made. The rejection system can be classified into two categories by their implementation methods, keyword spotting method and utterance verification method. The keyword spotting method uses an extra filler model as a candidate word as well as keyword models. The utterance verification method uses the anti-models for each phoneme for the calculation of confidence score after it has constructed the anti-models for all phonemes. We implemented an utterance verification algorithm which can be used for vocabulary independent speech recognizer. We also compared three kinds of means for the calculation of confidence score, and found out that the geometric mean had shown the best result. For the normalization of confidence score, usually Sigmoid function is used. On using it, we compared the effect of the weight constant for Sigmoid function and determined the optimal value. And we compared the effects of the size of cohort set, the results showed that the larger set gave the better results. And finally we found out optimal confidence score threshold value. In case of using the threshold value, the overall recognition rate including rejection errors was about 76%. This results are going to be adapted for stock information system based on speech recognizer which is currently provided as an experimental service by Korea Telecom.

  • PDF

Keyword Spotting Algorithm within a Continuous Syllable Sentence for the Post-Processing of Speech Recognition (음성 인식 후처리를 위한 연속 음절 문장의 키워드 추출 알고리즘)

  • Cho, Shi-Won;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.170-171
    • /
    • 2008
  • 연속적인 음성 인식 결과는 띄어쓰기를 하지 않은 연속 음절 문장들로 이루어져 있다. 본 논문은 음성 인식 후처리 단계에서 연속 음절 문장을 조사/어미 사전을 이용한 어절 생성 과정과 형태소 분석기를 이용하여 어절을 생성한 후 키워드를 추출한다. 실험 결과, 어절 생성기만 적용한 방식보다 제안된 알고리즘의 인식률이 향상되는 것을 확인하였다.

  • PDF

Implementation of Vocabulary-Independent Keyword Spotting System (가변어휘 핵심어 검출 시스템의 구현)

  • Shin Young Wook;Song Myung Gyu;Kim Hyung Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.167-170
    • /
    • 2000
  • 본 논문에서는 triphone을 기본단위로 하는 HMM에 의해 핵심어 모델을 구성하고, 사용자가 임의로 핵심어를 추가 및 변경할 수 있도록 가변어휘 핵심어 검출기를 구현하였다. 비핵심어 모델링 방법으로 monophone clustering을 사용한 방법 및 GMM을 사용한 방법의 성능을 비교하였다. 또한 후처리 과정에서 가변어휘 인식구조에 적합한 anti-subword 모델을 사용하였으며 몇 가지 구현방식에 따른 후처리 성능을 검토하였다. 실험결과 비핵심어 모델로 monophone을 clustering하여 사용한 방법보다 GMM을 사용한 경우 약간의 인식성능 개선을 얻을 수 있었으며, 후처리 과정에서 Kullback distance를 이용한 anti-subword 모델링 방식이 다른 방식에 비해 우수한 결과를 나타냈다.

  • PDF

A Study on the Recognition-Rate Improvement by the Keyword Spotting System using CM Algorithm (CM 알고리즘을 이용한 핵심어 검출 시스템의 인식률 향상에 관한 연구)

  • Won Jong-Moon;Lee Jung-Suk;Kim Soon-Hyob
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.81-84
    • /
    • 2001
  • 본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.

  • PDF

Improvement of Confidence Measure Performance in Keyword Spotting using Background Model Set Algorithm (BMS 알고리즘을 이용한 핵심어 검출기 거절기능 성능 향상 실험)

  • Kim Byoung-Don;Kim Jin-Young;Choi Seung-Ho
    • MALSORI
    • /
    • no.46
    • /
    • pp.103-115
    • /
    • 2003
  • In this paper, we proposed Background Model Set algorithm used in the speaker verification to improve calculating confidence measure(CM) in speech recognition. CM is to display relative likelihood between recognized models and antiphone models. In previous method calculating of CM, we calculated probability and standard deviation using all phonemes in composition of antiphone models. At this process, antiphone CM brought bad recognition result. Also, recognition time increases. In order to solve this problem, we studied about method to reconstitute average and standard deviation using BMS algorithm in CM calculation.

  • PDF