• Title, Summary, Keyword: Interface

Search Result 18,993, Processing Time 0.056 seconds

Host Interface Design for TCP/IP Hardware Accelerator (TCP/IP Hardware Accelerator를 위한 Host Interface의 설계)

  • Jung, Yeo-Jin;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2B
    • /
    • pp.1-10
    • /
    • 2005
  • TCP/IP protocols have been implemented in software program running on CPU in end systems. As the increased demand of fast protocol processing, it is required to implement the protocols in hardware, and Host Interface is responsible for communication between external CPU and the hardware blocks of TCP/IP implementation. The Host Interface follows AMBA AHB specification for the communication with external world. For control flow, the Host Interface behaves as a slave of AMBA AHB. Using internal Command/status Registers, the Host Interface receives commands from CPU and transfers hardware status and header information to CPU. On the other hand, the Host Interface behaves as a master for data flow. Data flow has two directions, Receive Flow and Transmit Flow. In Receive Flow, using internal RxFIFO, the Host Interface reads data from UDP FIFO or TCP buffer and transfers data to external RAM for CPU to read. For Transmit Flow, the Host Interface reads data from external RAM and transfers data to UDP buffer or TCP buffer through internal TxFIFO. TCP/IP hardware blocks generate packets using the data and transmit. Buffer Descriptor is one of the Command/Status Registers, and the information stored in Buffer Descriptor is used for external RAM access. Several testcases are designed to verify TCP/IP functions. The Host Interface is synthesized using the 0.18 micron technology, and it results in 173 K gates including the Command/status Registers and internal FIFOs.

Design and Implementation of RAID Controller using Serial ATA Interface (Serial ATA Interface를 통한 RAID Controller 보드의 설계 및 구현)

  • Lim, Seung-Ho;Lee, Ju-Pyung;Park, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.665-668
    • /
    • 2003
  • In this paper, we have designed and implemented the RAID controller board which connects to the host computer with serial ATA interface and connects to the disks with parallel ATA interface. Serial ATA interface is proposed to overcome the design limitation of parallel ATA while enabling the storage interface to scale with the slowing media rate demands for PC platforms. Serial ATA is to replace parallel ATA with the compatibility with existing operating systems and drivers, adding performance headroom for years to come. It Moreover, serial ATA provides even faster transfer rate of 150 Mbytes/s which is larger than that of current parallel ATA. The RAID controller board designed in this paper combines up to 4 disks with parallel ATA interface, and connects to PC host computer with serial ATA interface. We have implemented RAID controller using Verilog HDL language with FPGA chip. The RAID controller supports RAID level 0 and 1 functionality. Experimently, the average read/write performance of parallel ATA interface is about 30 Mbytes/s. Therefore, when 4 parallel disks is connected to the RAID controller board, we can get almost full throughput of serial ATA protocol using the RAID level 0 configuration with 4 disks.

  • PDF

Digital Epistemology and New Design Thinking of Interface (디지털 인식론과 새로운 인터페이스 디자인 사고)

  • Oh, Chang-Sup
    • Archives of design research
    • /
    • v.19 no.2
    • /
    • pp.183-194
    • /
    • 2006
  • This thesis, in terms of epistemology, aims to show the new possibility of digital interface. First, the thesis surveys the history of digital interface, and clarifies that current interface is the product of accidental gauge. The fact that it is not the inevitable result hints the infinite area of new digital interface. The current limited interface comes from the limited understanding of digital technologies and digital media. For example, it can be referred to metaphoric comprehension, 'black box.' This thesis tries to get over such comprehension, considering digital as a kind of light. New epistemology in which digital is regarded as light and medium extends to the ethics that interface design should become a creative activity, accepting the difference and making a new design.

  • PDF

Interface Mapping and Generation Methods for Intuitive User Interface and Consistency Provision (사용자 인터페이스의 직관적인 인식 및 일관성 부여를 위한 인터페이스 매핑 및 생성 기법)

  • Yoon, Hyo-Seok;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • /
    • pp.135-139
    • /
    • 2009
  • In this paper we present INCUI, a user interface based on natural view of physical user interface of target devices and services in pervasive computing environment. We present a concept of Intuitively Natural and Consistent User Interface (INCUI) consisted of an image of physical user interface and a description XML file. Then we elaborate how INCUI template can be used to consistently map user interface components structurally and visually. We describe the process of INCUI mapping and a novel mapping method selection architecture based on domain size, types of source and target INCUI. Especially we developed and applied an extended LCS-based algorithm using prefix/postfix/synonym for similarity calculation.

  • PDF

An Area Efficient Network Interface Architecture (NoC에서 면적 효율적인 Network Interface 구조에 관한 연구)

  • Lee, Ser-Hoon;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.361-370
    • /
    • 2008
  • NoC is adopted for data communication between processors and IPs in MPSoC system. NoC has an advantage of scalability in that system can be easily expanded just by adding switches. However, as the number of switches increases, chip area increases as well as data transfer latency. This paper proposes an architecture that can reduce the number of switches in the system by sharing network interfaces. To reduce NI area, the modules sharing network interface use a common buffer in network interface. Experimental results show that the chip area has been reduced by 46.5% and data transfer latency by 17.1%, respectively, compared to conventional architecture.

Molecular Dynamics Simulation of Al2O3 Grain Boundaries with CaAl2Si2O8 as Interface Phase (CaAl2Si2O8를 입계상으로 가지는 Al2O3 계면의 분자동력학 시뮬레이션)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.92-98
    • /
    • 2006
  • Molecular dynamics simulations were performed to study interface structures between an $Al_2O_3$ crystalline phase and a interface phase of $CaAl_2Si_2O_8$. We calculated atomic structures and excess interface energies in systems with different thicknesses of the interface film. It was found that excess interface energies at first readily decreased with increasing film thickness, but increased for larger thicknesses of more than 2 nm. The excess energies of $Al_2O_3/CaAl_2Si_2O_8$ interfaces exhibit a minimum at a thickness around 1 nm. In this range of film thicknesses, the atoms in the interface film show a short-range ordered structure and slow diffusion rather than the random structure and rapid diffusion expected to an observation of an equilibrium thickness for interface films in ceramics.

Structural Study of Interface Layers in Tetragonal-NiSi (010)/Si using Density Functional Theory (밀도범함수를 이용한 정방정계-NiSi (010)/Si 계면 층의 구조 연구)

  • Kim, Dae-Hee;Kim, Dae-Hyun;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.377-381
    • /
    • 2009
  • Tetragonal-NiSi (010)/Si superstructures were calculated for studying the interface structure using density functional theory, The orthorhombic-NiSi was changed to the tetragonal-NiSi to be matched with the Si surface for epitaxy interface. The eight interface models were produced by the type of the Si surfaces, The tetragonal-NiSi (010)/Si (020)[00-1] superstructure was energetically the most favorable, and the interface thickness of this superstructure was the shortest among the tetragonal-NiSi (010)/Si superstructures. However, in the case of tetragonal-NiSi (010)/Si (010)[00-1] superstructure, it was energetically the most unfavorable, and the interface thickness was the longest. The energies and interface thicknesses of tetragonal-NiSi (010)/Si superstructures were influenced by the coordination number of Ni atoms and the bond length between atoms located at the interface.

A Graphical User Interface Design for Surveillance and Security Robot (감시경계 로봇의 그래픽 사용자 인터페이스 설계)

  • Choi, Duck-Kyu;Lee, Chun-Woo;Lee, Choonjoo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • This paper introduces a graphical user interface design that is aimed to apply to the surveillance and security robot, which is the pilot program for the army unmanned light combat vehicle. It is essential to consider the activities of robot users under the changing security environment in order to design the efficient graphical user interface between user and robot to accomplish the designated mission. The proposed design approach firstly identifies the user activities to accomplish the mission in the standardized scenarios of military surveillance and security operation and then develops the hierarchy of the interface elements that are required to execute the tasks in the surveillance and security scenarios. The developed graphical user interface includes input control component, navigation component, information display component, and accordion and verified by the potential users from the various skilled levels with the military background. The assessment said that the newly developed user interface includes all the critical elements to execute the mission and is simpler and more intuitive compared to the legacy interface design that was more focused on the technical and functional information and informative to the system developing engineers rather than field users.

Characterization of Thermal Contact Resistance Doped with Thermal Interface Material (접촉열전도재를 도포한 접촉열저항 특성연구)

  • Bajracharya, Iswor;Ito, Yoshimi;Nakayama, Wataru;Moon, Byeong-Jun;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.943-950
    • /
    • 2013
  • This paper describes the thermal contact resistance and its effect on the performance of thermal interface material. An ASTM D 5470 based apparatus is used to measure the thermal interface resistance. Bulk thermal conductivity of different interface material is measured and compared with manufacturers' data. Also, the effect of grease void in the contact surface is investigated using the same apparatus. The flat type thermal interface tester is proposed and compared with conventional one to consider the effect of lateral heat flow. The results show that bulk thermal conductivity alone is not the basis to select the interface material because high bulk thermal conductivity interface material can have high thermal contact resistance, and that the center voiding affects the thermal interface resistance seriously. On the aspect of heat flow direction, thermal impedance of the lateral heat flow shows higher than that of the longitudinal heat flow by sixteen percent.

Influence of interface on the behavior of infilled frame subjected to lateral load using linear analysis

  • Senthil, K.;Satyanarayanan, K.S.
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.127-144
    • /
    • 2016
  • Two dimensional numerical investigations were carried out to study the influence of interface thickness and their pattern on the behavior of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The linear elastic analysis was carried out on one and two bay structural systems as well as the influence of number of stories was studied by varying the number of stories as single, three and five. The cement mortar was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The interface was recognized as one sided, two sided, three sided and four sided and their effect was studied by removing the interface material between the reinforced concrete frame and masonry infill. The effect of lateral loads on infill masonry wall was also studied by varying assumed loads as 10, 20, 30, 40, 50 and 60 kN. The behavior of infilled frames studied has revealed that there is a maximum influence of interface thickness and interface pattern corresponding to 10 mm thickness. In general, the lateral displacement of frame is increased linearly with increase in lateral loads.