A low insertion-loss, high-isolation switch based on single pole double throw (SPDT) for a 2.4GHz Bluetooth low-energy transceiver is presented in this paper. In order to increase isolation, the body floating technique is implemented. Based on characteristics whereby the ratio of the sizes of the shunt and the series transistors significantly affect the performance of the switches, the device sizes are optimized. A simple matching network is also designed to enhance the insertion loss. Thus, the SPDT switch has high isolation and low insertion loss without increasing the complexity of the circuit. The proposed SPDT is designed and simulated in a complementary metal-oxide semiconductor 65nm process. The switch has a $530{\mu}m{\times}270{\mu}m$ area and achieves 0.9dB, 1.78dB insertion loss and 40dB, 41dB isolation of transmission, reception modes, respectively.