• Title, Summary, Keyword: In vitro rumen fermentation

Search Result 215, Processing Time 0.066 seconds

Investigation of Dietary Lysophospholipid (LipidolTM) to Improve Nutrients Availability of Diet with In Vitro Rumen Microbial Fermentation Test

  • Cho, Sangbuem;Kim, Dong Hyun;Hwang, Il Hwan;Choi, Nag-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • This study was conducted to investigate the effect of biological membrane transfer modifier, lysophospholipd (LPLs) on the parameters from in vitro rumen simulated fermentation. Commercially available LPLs product (Lipidol$^{TM}$) was supplemented into experimental diets which consisted of orchard grass and concentrate diet (60:40) in different levels (0.1%, 0.3% and 0.5%). Then in vitro rumen simulated fermentation was performed. Although, a declining trend of pH was found in treatments, all pH values were detected in a range relevant to normal rumen fermentation. Gas production, ammonia nitrogen and total VFA production were greatly influenced by the supplementation of LPLs. All parameters were increased along with increased levels of LPLs in diet. As a result, 0.1% of Lipidol$^{TM}$ is recommended based on the determined in vitro rumen fermentative parameters in this study.

Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies

  • Park, KiYeon;Lee, HongGu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • In rumen in vitro experiments, although nitrogen gas (N2) flushing has been widely used, its effects on rumen fermentation characteristics are not clearly determined. The present study is the first to evaluate the effects of N2 flushing on rumen fermentation characteristics in in vitro batch culture system by comparing with new applicable non-metabolizable gas: argon (Ar). The rumen fluid was taken from two Korean native heifers followed by incubation for 3, 9, 12, and 24 h with N2 or Ar flushing. As a result, in all incubation time, N2 flushing resulted in higher total gas production than Ar flushing (p < 0.01). Additionally, in N2 flushing group, ammonia nitrogen was increased (p < 0.01). However, volatile fatty acids profiles and pH were not affected by the flushing gases (p > 0.05). In conclusion, the present study demonstrated that N2 flushing can influence the rumen nitrogen metabolism via increased ammonia nitrogen concentration and Ar flushing can be used as a new alternative flushing gas.

Effect of γ-aminobutyric acid producing bacteria on in vitro rumen fermentation, growth performance, and meat quality of Hanwoo steers

  • Mamuad, Lovelia L.;Kim, Seon Ho;Ku, Min Jung;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1087-1095
    • /
    • 2020
  • Objective: The present study aimed to evaluate the effects of γ-aminobutyric acid (GABA)-producing bacteria (GPB) on in vitro rumen fermentation and on the growth performance and meat quality of Hanwoo steers. Methods: The effects of GPB (Lactobacillus brevis YM 3-30)-produced and commercially available GABA were investigated using in vitro rumen fermentation. Using soybean meal as a substrate, either GPB-produced or commercially available GABA were added to the in vitro rumen fermentation bottles, as follows: control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB; T3, 2 g/L autoclaved GPB; T4, 5 g/L autoclaved GPB; T5, 2 g/L GABA; and T6, 5 g/L GABA. In addition, 27 Hanwoo steers (602.06±10.13 kg) were subjected to a 129-day feeding trial, during which they were fed daily with a commercially available total mixed ration that was supplemented with different amounts of GPB-produced GABA (control, no additive; T1, 2 g/L GPB; T2, 5 g/L GPB). The degree of marbling was assessed using the nine-point beef marbling standard while endotoxin was analyzed using a Chromo-Limulus amebocyte lysate test. Results: In regard to in vitro rumen fermentation, the addition of GPB-produced GABA failed to significantly affect pH or total gas production but did increase the ammonia nitrogen (NH3-N) concentration (p<0.05) and reduce total biogenic amines (p<0.05). Animals fed the GPB-produced GABA diet exhibited significantly lower levels of blood endotoxins than control animals and yielded comparable average daily gain, feed conversion ratio, and beef marbling scores. Conclusion: The addition of GPB improved in vitro fermentation by reducing biogenic amine production and by increasing both antioxidant activity and NH3-N production. Moreover, it also reduced the blood endotoxin levels of Hanwoo steers.

Assessment of Anti-nutritive Activity of Tannins in Tea By-products Based on In vitro Rumen Fermentation

  • Kondo, Makoto;Hirano, Yoshiaki;Ikai, Noriyuki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1571-1576
    • /
    • 2014
  • Nutritive values of green and black tea by-products and anti-nutritive activity of their tannins were evaluated in an in vitro rumen fermentation using various molecular weights of polyethylene glycols (PEG), polyvinyl pyrrolidone (PVP) and polyvinyl polypyrrolidone as tannin-binding agents. Significant improvement in gas production by addition of PEG4000, 6000 and 20000 and PVP was observed only from black tea by-product, but not from green tea by-product. All tannin binding agents increased $NH_3$-N concentration from both green and black tea by-products in the fermentation medium, and the PEG6000 and 20000 showed relatively higher improvement in the $NH_3$-N concentration. The PEG6000 and 20000 also improved in vitro organic matter digestibility and metabolizable energy contents of both tea by-products. It was concluded that high molecular PEG would be suitable to assess the suppressive activity of tannins in tea by-products by in vitro fermentation. Higher responses to gas production and $NH_3$-N concentration from black tea by-product than green tea by-product due to PEG indicate that tannins in black tea by-product could suppress rumen fermentation more strongly than that in green tea by-product.

Effects of short-term fasting on in vivo rumen microbiota and in vitro rumen fermentation characteristics

  • Kim, Jong Nam;Song, Jaeyong;Kim, Eun Joong;Chang, Jongsoo;Kim, Chang-Hyun;Seo, Seongwon;Chang, Moon Baek;Bae, Gui-Seck
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.776-782
    • /
    • 2019
  • Objective: Fasting may lead to changes in the microbiota and activity in the rumen. In the present study, the effects of fasting on rumen microbiota and the impact of fasting on in vitro rumen fermentation were evaluated using molecular culture-independent methods. Methods: Three ruminally cannulated Holstein steers were fed rice straw and concentrates. The ruminal fluids were obtained from the same steers 2 h after the morning feeding (control) and 24 h after fasting (fasting). The ruminal fluid was filtrated through four layers of muslin, collected for a culture-independent microbial analysis, and used to determine the in vitro rumen fermentation characteristics. Total DNA was extracted from both control and fasting ruminal fluids. The rumen microbiota was assessed using denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction. Microbial activity was evaluated in control and fasting steers at various intervals using in vitro batch culture with rice straw and concentrate at a ratio of 60:40. Results: Fasting for 24 h slightly affected the microbiota structure in the rumen as determined by DGGE. Additionally, several microorganisms, including Anaerovibrio lipolytica, Eubacterium ruminantium, Prevotella albensis, Prevotella ruminicola, and Ruminobacter amylophilus, decreased in number after fasting. In addition, using the ruminal fluid as the inoculum after 24 h of fasting, the fermentation characteristics differed from those obtained using non-fasted ruminal fluid. Compared with the control, the fasting showed higher total gas production, ammonia, and microbial protein production (p<0.05). No significant differences, however, was observed in pH and dry matter digestibility. Conclusion: When in vitro techniques are used to evaluate feed, the use of the ruminal fluid from fasted animals should be used with caution.

Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

  • Nguyen, S.H.;Li, L.;Hegarty, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.807-813
    • /
    • 2016
  • Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as $NaNO_3$) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in vitro.

Fumarate Reductase-Producing Enterococci Reduce Methane Production in Rumen Fermentation In Vitro

  • Kim, Seon-Ho;Mamuad, Lovelia L.;Kim, Dong-Woon;Kim, Soo-Ki;Lee, Sang-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.558-566
    • /
    • 2016
  • Biotic agents such as fumarate-reducing bacteria can be used for controlling methane (CH4) production in the rumen. Fumarate-reducing bacteria convert fumarate to succinate by fumarate reductase, ultimately leading to the production of propionate. Fumarate-reducing bacteria in the genus Enterococcus were isolated from rumen fluid samples from slaughtered Korean native goats. The enterococci were identified as Enterococcus faecalis SROD5 and E. faecium SROD by phylogenetic analyses of 16S rRNA gene sequences. The fumarate reductase activities of the SROD5 and SROD strains were 42.13 and 37.05 mM NADH oxidized/min/mg of cellular nitrogen (N), respectively. Supplementation of rumen fermentation in vitro with the SROD5 and SROD strains produced significantly higher propionate, butyrate, and total volatile fatty acid (VFA) concentrations than controls at 12 h; VFA concentrations tended to increase after 24 h of incubation. The generated CH4 concentration was significantly lower in the SROD5 and SROD treatment groups after 24 h of incubation. These findings indicate that E. faecium SROD has potential as a direct-fed microbial additive for increasing total VFAs while decreasing CH4 production in rumen fermentation in vitro.

Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis

  • Reina, Asa;Tanaka, A.;Uehara, A.;Shinzato, I.;Toride, Y.;Usui, N.;Hirakawa, K.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.700-707
    • /
    • 2010
  • Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on $CH_4$ and $CO_2$ production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.

Rumen Microbial Population in the In vitro Fermentation of Different Ratios of Forage and Concentrate in the Presence of Whole Lerak (Sapindus rarak) Fruit Extract

  • Suharti, Sri;Astuti, Dewi Apri;Wina, Elizabeth;Toharmat, Toto
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1086-1091
    • /
    • 2011
  • This experiment was designed to investigate the effect of lerak extract on the dynamic of rumen microbes in the in vitro fermentation of diet with different ratios of forage and concentrate. In vitro fermentation was conducted according to the method of Tilley and Terry (1963). The design of experiment was a factorial block design with 2 factors. The first factor was the ratio of forage and concentrate (90:10, 80:20, and 70:30 w/w) and the second factor was the level of lerak extract (0, 0.6, and 0.8 mg/ml). Total volatile fatty acid (VFA) concentration, proportional VFA and NH3 concentration were measured at 4 h incubation. Protozoal numbers in the buffered rumen fluid after 4 and 24 h of incubation were counted under a microscope. Bacterial DNAs of buffered rumen fluid were isolated from incubated samples after 24 h of incubation using a QiaAmp kit. Total bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Prevotella ruminicola were quantified using real time polymerase chain reaction (PCR). Lerak extract markedly reduced protozoal numbers in buffered rumen fluid of all diets after 24 h of incubation. Total bacteria did not change with lerak extract addition. While no difference in F. succinogenes was found, there was a slight increase in R. albus number and a significant enhancement in P. ruminicola number by increasing the level of lerak extract in all diets. Propionate concentration significantly increased in the presence of lerak extract at level 0.8 mg/ml. It was concluded that the addition of lerak extract could modify rumen fermentation and had positive effects on rumen microbes.

Improvement of Nutritive Value and In vitro Ruminal Fermentation of Leucaena Silage by Molasses and Urea Supplementation

  • Phesatcha, K.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1136-1144
    • /
    • 2016
  • Leucaena silage was supplemented with different levels of molasses and urea to study its nutritive value and in vitro rumen fermentation efficiency. The ensiling study was randomly assigned according to a $3{\times}3$ factorial arrangement in which the first factor was molasses (M) supplement at 0%, 1%, and 2% of crop dry matter (DM) and the second was urea (U) supplement as 0%, 0.5%, and 1% of the crop DM, respectively. After 28 days of ensiling, the silage samples were collected and analyzed for chemical composition. All the nine Leucaena silages were kept for study of rumen fermentation efficiency using in vitro gas production techniques. The present result shows that supplementation of U or M did not affect DM, organic matter, neutral detergent fiber, and acid detergent fiber content in the silage. However, increasing level of U supplementation increased crude protein content while M level did not show any effect. Moreover, the combination of U and M supplement decreased the content of mimosine concentration especially with M2U1 (molasses 2% and urea 1%) silage. The result of the in vitro study shows that gas production kinetics, cumulation gas at 96 h and in vitro true digestibility increased with the increasing level of U and M supplementation especially in the combination treatments. Supplementation of M and U resulted in increasing propionic acid and total volatile fatty acid whereas, acetic acid, butyric acid concentrations and methane production were not changed. In addition, increasing U level supplementation increased $NH_3$-N concentration. Result from real-time polymerase chain reaction revealed a significant effect on total bacteria, whereas F. succinogenes and R. flavefaciens population while R. albus was not affected by the M and U supplementation. Based on this study, it could be concluded that M and urea U supplementation could improve the nutritive value of Leucaena silage and enhance in vitro rumen fermentation efficiency. This study also suggested that the combination use of M and U supplementation level was at 2% and 1%, respectively.