• Title, Summary, Keyword: IGF- I

Search Result 365, Processing Time 0.059 seconds

Serum levels of free insulin-like growth factor-I and clinical value in healthy children (한국 소아 및 청소년에서 혈중 유리 insulin-like growth factor-I 농도치와 임상적 의의)

  • Chung, Young Hee;Chung, Woo Yeong
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • Purpose : The serum levels of total insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3 reflect endogenous growth hormone (GH) secretion in healthy children. Free form of IGF-I which is suggested to have more potent biological action than complex form of IGF-I. The aim of this study is to investigate the serum levels of free IGF-I and its clinical value in healthy children. Methods : Serum levels of total IGF-I and IGFBP-3 were determined in 494 healthy children (248 boys and 246 girls) by RIA and IRMA. Serum level of free IGF-I was determined in 206 healthy children (103 boys and 103 girls) by IRMA. Results : The free IGF-I level increased with age in both sex. The free IGF-I level increased continuously between 7 and 15 years of age in boys, but decrement was noted after 14 years of age in girls. Serum total IGF-I level also increased with age in similar pattern of that of free IGF-I. There were no significant differences of mean values of the ratio of free IGF-I/total IGF-I in relation to age in both sex. And there were significant correlations between the level of free IGF-I and total IGF-I and the ratio of total IGF-I/IGFBP-3, respectively. Conclusion : In healthy children, serum free IGF-I increased with age in both sex and high free IGF-I level may play an important role in pubertal growth spurt. Our results suggest that the increased serum free IGF-I level in puberty may reflect changes in total IGF-I rather than IGFBP-3. But free IGF-I does not have more clinical value than total IGF-I because of no significant differences of mean values of the ratio of free IGF-I/total IGF-I in relation to age.

The Effect of Insulin-Like Growth Factor-I(IGF-I) and IGF Binding Protein-3(IGFBP-3) on Cellular Proliferation in Mouse 3T3 Fibroblast Cells (마우스 섬유아세포(3T3 fibroblast cells)에서 Insulin-like Growth Factor-I(IGF-I) 및 IGF Binding Protein-3 (IGFBP-3)이 세포증식에 미치는 영향)

  • Cho, Chul-Ho;Kwak, Seung-Min;Moon, Tae-Hun;Cho, Jae-Hwa;Ryu, Jeong-Seon;Lee, Hyong-Lyeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.618-628
    • /
    • 1999
  • Background: Cell growth is a balance between cell proliferation and cell death. Insulin-like growth factor-I(IGF-I), which binds IGF-I receptor(IGF-IR), mediates cellular proliferation as a potent mitogen. IGF binding protein-3(IGFBP-3) as a circulating major IGFBP can inhibit or enhance the effects of IGF-I on cellular growth by binding IGFs. Methods: We investigated the expressions of mRNA of IGF-I and IGF-IR by northern blot and phosphorylation of IGF-IR with the treatment of IGF-I by western blot in 3T3 fibroblast cells. The cellular proliferations of 3T3 cells with the treatments of IGF-I were evaluated using $^3H$-thymidine incorporation and MTT assay. Also to observe the effect of IGFBP-3 on cellular proliferation, 3T3 cells were treated with anti-IGFBP-3 and ${\alpha}IR_3$(monoclonal antibody to IGF-IR) alone or in combination. Results: Our results demonstrated that 3T3 cells showed mRNA expressions of IGF-I and IGF-IR and the IGF-I increased phosphorylation of IGF-IR. The treatments of 3T3 cells with IGF-I increased cellular proliferation in 5 % and 1 % seruma-containing media, not in serum-free media. The addition of anti-IGFBP-3 to neutralize IGFBP-3 showed 2-fold increase of cellular proliferation, and also co-incubation of anti-IGFBP-3 and ${\alpha}IR_3$ together showed similar increase of cellular proliferation in 3T3 cells. Interestingly, when the cells were pretreated with ${\alpha}IR_3$ for 4 hr, prior to the simultaneous addition of ${\alpha}IR_3$ and anti-IGFBP-3, anti-IGFBP-3-mediated cellular proliferation was decreased to control level. All of these results suggest that free IGF-I released from IGF-I/IGFBP-3 complex would be involved in the cellular proliferation. Conclusion: IGF-I is a mitogen through the activation of IGF-IR in 3T3 cells, and IGFBP-3 could be a potent inhibitor for IGF-I action by binding IGF-I.

  • PDF

Response of Muscle Protein Synthesis to the Infusion of Insulin-like Growth Factor-I and Fasting in Young Chickens

  • Kita, K.;Shibata, T.;Aman Yaman, M.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1760-1764
    • /
    • 2002
  • In order to elucidate the physiological function of circulating IGF-I on muscle protein synthesis in the chicken under malnutritional conditions, we administrated recombinant chicken IGF-I using a osmotic mini pump to fasted young chickens and measured the rate of muscle protein synthesis and plasma metabolite. The pumps delivered IGF-I at the rate of $22{\mu}g/d\{300{\mu}g{\cdot}(kg\;body\;weight{\cdot}d)^{-1}\}$. Fractional rate of protein synthesis in the muscle was measured using a large dose injection of L-[$2,6-^3H$]phenylalanine. Constant infusion of chicken IGF-I did not affect plasma glucose level. Significant interaction between dietary treatment and IGF-I infusion was observed in plasma NEFA and total cholesterol concentrations. When chicks were fasted, IGF-I infusion decreased plasma NEFA and total cholesterol concentrations. On the other hand, IGF-I administration did not affect plasma levels of both metabolites. Fasting reduced plasma triglyceride concentration significantly. IGF-I infusion also decreased the level of plasma triglyceride. Plasma IGF-I concentration of young chickens was halved by fasting for 1 d. IGF-I infusion using an osmotic minipump for 1 d increased plasma IGF-I concentration in fasted chicks to the level of fed chicks. Fasting decreased body weight and the loss of body weight was significantly ameliorated by IGF-I infusion. There was a significant interaction between dietary treatment and IGF-I infusion in the fractional rate of breast muscle protein synthesis. There was no effect of IGF-I infusion on muscle protein synthesis in fed chicks. Muscle protein synthesis reduced by fasting was ameliorated by IGF-I infusion, but did not reach to the level of fed control. Muscle weight of fasted chicks infused with IGF-I was similar to fasted birds without IGF-I infusion, which suggests that muscle protein degradation would be increased by IGF-I infusion as well as protein synthesis in fasted chicks.

Association among Egg Productivity, Granulosa Layer IGF-I, and Ovarian IGF-I in Korean Native Ogol Chicken

  • Kang, W.J.;Seo, D.S.;Ko, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.325-330
    • /
    • 2003
  • There exists considerable evidence that insulin-like growth factor-I (IGF-I) is involved in the regulation of ovulation rate and follicle development. IGF-I is believed to modulate the effects of gonadotropins on follicular growth and cell differentiation via paracrine and autocrine mechanisms. Therefore, this study was performed to relate the expression of IGF-I on ovaries and follicles with egg productivity at 60 wk. The egg productivity of 70 KNOC was recorded from 20 to 60 wk. Blood was taken every 10 wk and ovaries and follicles were taken at 60 wk. Serum IGF-I and IGF-I of ovaries and follicles were measured by radioimmunoassay. Based on egg production levels up to 60 wk and ovarian IGF-I expression at 60 wk, respectively. Chickens were divided into two groups, high and low. Egg production and serum IGF-I in the high IGF-I group were higher than those in the low group. Moreover, the IGF-I expression of follicles in the high ovarian IGF-I expression group was higher than that in the low group. These finding are consistent with the report that IGF-I indirectly regulates ovulation in chickens, suggesting that this regulation may play an important role in improved egg productivity.

Molecular Cloning of Insulin-like Growth Factor-I (IGF-I) and IGF-II Genes of Marine Medaka (Oryzias dancena) and Their Expression in Response to Abrupt Transfer from Freshwater to Seawater

  • Kang, Yue-Jai;Kim, Ki-Hong
    • Fisheries and aquatic sciences
    • /
    • v.13 no.3
    • /
    • pp.224-230
    • /
    • 2010
  • Growth hormone (GH) is known as one of the main osmoregulators in euryhaline teleosts during seawater (SW) adaptation. Many of the physiological actions of GH are mediated through insulin-like growth factor-I (IGF-I), and the GH/IGF-I axis is associated with osmoregulation of fish during SW acclimation. However, little information is available on the response of fish IGF-II to hyperosmotic stress. Here we present the first cloned IGF-I and IGF-II cDNAs of marine medaka, Oryzias dancena, and an analysis of the molecular characteristics of the genes. The marine medaka IGF-I cDNA is 1,340 bp long with a 257-bp 5' untranslated region (UTR), a 528 bp 3' UTR, and a 555-bp open reading frame (ORF) encoding a propeptide of 184 amino acid (aa) residues. The full-length marine medaka IGF-II cDNA consists of a 639 bp ORF encoding 212 aa, a 109 bp 5' UTR, and a 416 bp 3' UTR. Homology comparison of the deduced aa sequences with other IGF-Is and IGF-IIs showed that these genes in marine medaka shared high structural homology with orthologs from other teleost as well as mammalian species, suggesting high conservation of IGFs throughout vertebrates. The IGF-I mRNA level increased following transfer of marine medaka from freshwater (FW) to SW, and the expression level was higher than that of the control group, which was maintained in FW. This significantly elevated IGF-I level was maintained throughout the experiment (14 days), suggesting that in marine medaka, IGF-I is deeply involved in the adaptation to abrupt salinity change. In contrast to IGF-I, the increased level of marine medaka IGF-II mRNA was only maintained for a short period, and quickly returned a level similar to that of the control group, suggesting that marine medaka IGF-II might be a gene that responds to acute stress or one that produces a supplemental protein to assist with the osmoregulatory function of IGF-I during an early phase of salinity change.

Insulin-like Growth Factors-Ι and II Promote Proliferation and Differentiation of Cultured Pig Preadipocytes by Different Receptor-mediated Mechanisms (Insulin-like Growth Factors-Ι 과 II 는 서로 다른 수용체-매개 작용기전을 통해 돼지 지방전구세포의 증식과 분화를 촉진한다)

  • Ownes, Phillip;Kim, Won-Young;Kim, Hye-Rim;Chung, Chung-Soo
    • Journal of Animal Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.649-656
    • /
    • 2008
  • The current study was undertaken to investigate the mechanism of action of insulin-like growth factors (IGFs) on proliferation and differentiation of pig preadipocytes. The preadipocytes were isolated from the backfat of new-born female pigs and cultured in serum-deprived medium in the presence and absence of recombinant native IGFs or recombinant mutant IGFs that have reduced affinity for binding to both type-1 IGF receptors and insulin receptors. Fifty ng/ml of either IGF-I, [Leu60]IGF-I, IGF-Ⅱ or [Leu27]IGF-Ⅱ were included in the media in which preadipocytes were cultured for 4 days. IGF-I, [Leu60]IGF-I, IGF-Ⅱ and [Leu27]IGF-Ⅱ stimulated proliferation of pig preadipocytes by 39%, 8%, 25% and 2% respectively, as measured by increased numbers of cells. This indicates that both IGF-I and -II promote replication of pig preadipocytes by actions mediated either by type-1 IGF receptor or insulin receptor. IGF-I, [Leu60]IGF-I, IGF-Ⅱ and [Leu27]IGF-Ⅱ stimulated differentiation of pig preadipocytes by 50%, 17%, 37% and 30%, respectively, measured as glycerolphosphate dehydrogenase activity. Reducing the affinity of IGF-I for type-1 IGF receptors or insulin receptors significantly reduced the differentiation response. However, the differentiation response to [Leu27]IGF-II was not significantly different from the response to IGF-II. This shows that IGF-I and IGF-Ⅱ promote cell differentiation by different receptor-mediated mechanisms. IGF-II promotes differentiation of pig preadipocytes by actions that do not involve either type-1 IGF receptors or insulin receptors. These actions therefore appear to be mediated by binding of IGF-II to type-2 IGF receptors(also known as cation-independendent mannose-6-phosphate receptor[CIM6P/IGF2 receptor]). This is the first study to find evidence that IGF-II promotes differentiation of preadipocytes from any animal species by actions mediated by CIM6P/IGF2 receptors. In summary, this study shows that IGF-I and IGF-Ⅱ promote differentiation of pig preadipocytes by mechanisms that involve different cellular receptors.

Effects of Insulin-like Growth Factor-I (IGF-I) on Body Weight and the Cocentration of Serum IGF Binding Proteins in Korean Rockfish (Sebastes schlegeli) (Insulin-like growth factor-I(IGE-I)이 조피볼락의 체중 및 혈액중 IGF binding proteins에 미치는 영향)

  • NAM Taek-Jeong;LEE Sang-Mi;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.774-778
    • /
    • 1998
  • The effect of insulin-like growth factor-I (IGF-I) on circulating insulin-like growth factor binding proteins (IGFBPs) in the Korean rockfish, Sebastes schlegeli, was assessed after injected of recombinant human IGF-I (6 $\mu$g/100 g body weight). Growth and metabolic status of each fish were assessed by determing body length and body weight changes, and serum glucose concentration. Serum IGF binding proteins concentrations were assessed by the Western ligand blot procedure using $^{125}I$-labeled human IGF-I tracer. The fish received IGF-I were Heavier than the saline-injected control fish after 2 weeks of treatment. Plasma IGFBP-3 concentration inclosed, but plasma IGFBP-1 and glucose levels decreased significantly after administration. Taken together, the findings of this study suggest that human IGF-I is biologically active in Korean rockfish and may be of significance in metabolic and growth-related processes.

  • PDF

Cloning and Characterization of cDNA for Korean Rockfish (Sebastes schlegeli ) Insulin-like Growth Factor-I

  • Kwon, Mi-Jin;Jo, Jae-Yoon;Nam, Taek-Jeong
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.119-125
    • /
    • 2006
  • To understand the comprehensive mechanisms of biological function for insulin-like growth factor-I (IGF-I) in vertebrates, we have investigated the cDNA sequence of this gene in the korean rockfish (Sebastes schlegeli). The mature form of korean rockfish IGF-I was found to be comprised of 67 amino acid residues, showing about a 7 kDa molecular weight. In this study, we used the polymerase chain reaction (PCR) to obtain a korean rockfish IGF-I (KR IGF-I) cDNA fragment, and methods of rapid amplification of cDNA ends (RACE) to obtain a full length of the KR IGF-I sequence. The KR IGF-I encoded for a predicted amino acid sequence showed identities of 93.6 %, 90.7 %, and 85.4 % in comparison with flounder, chinook salmon, and human IGF-I, respectively. To obtain recombinant biologically active polypeptides, korean rockfish B-C-A-D domains were amplified using the PCR, then the isolated cDNA was expressed in the E. coli BL21(DE3). The recombinant KR IGF-I protein biological function was measured by stimulation of [$^3H$] thymidine incorporation, suggesting the cDNA codes for the korean rockfish proIGF-I.

  • PDF

The Effect of the IGF-I treated Gingival and Periodontal Ligament Fibroblast on Osteoblasts (IGF-I으로 처리한 치은 및 치주인대 섬유모세포가 골모세포에 미치는 영향)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.31 no.6
    • /
    • pp.589-600
    • /
    • 2001
  • Insulin-like growth factor I (IGF-I) has the local tissue regulating actions. In bone, IGF-I increases the replication of osteoblastic lineage, probably preosteoblasts, and enhances osteoblastic collagen synthesis and matrix composition rates. The purpose of this study was to investigate the local regulatory effect of IGF-I on periodontium totally, both in an autocrine and paracrine manner. To examine the effect of IGF-I directly on osteoblast (OB) of test rats, and indirectlv on OB via periodontal ligament fibroblast (PDLF), and the effect of gingival fibroblast (GF) on OB via cellular paracrine manner for the understanding of humoral action of adjacent tissue, GF and PDLF were obtained from male Sprague-Dawley rats of six to eight weeks of age. OB was obtained iron frontal and parietal calvarial bone of Sprague-Dawley 21day-old-fetus. After each tell was Incubated 24 hours, for collecting conditioned medium, different concentrations of IGF-I (1,10,100 ng/ml,1ml/well) was adding in the GF, PDLF cells, and the supernatant from these cultures was put into the primary OB culture with $1{\times}10^4$cell/ml/well. The experimental group was divided into six groups control OB, IGF-I treated OB, OB culture with conditioned medium from PDLF, OB culture with conditioned medium from IGF-I treated PDLF, OB culture with conditioned medium from GF, OB culture with conditioned medium from IGF-I treated GF. After final IGF-I treatment, OB was Incubated for 24 hours, and alkaline phosphatase activity assay, BMP expression, cell proliferation measurement using MTT assay, total protein measurement, Collagen synthesis assay using western blot, and examination of bone nodule synthesis were done. Alkaline phosphatase expressions were increased in the group of PDLF-IGF-I supernatant treatment. Direct IGF-I treatment with concentrations of 100ng/m1 showed increased viable tell number measured by MTT assay. And IGF-I treatment did not increase total protein amount. The entire experimental group showed BMP2, 4 expression in western blot, and there was no significant difference between control and experimental groups. These results suggested that supernatant from PDLF effects on increasing cellular activities of OB regardless of IGF-I, and at high concentration, IGF-I increases OB tell proliferation.

  • PDF

The Role of Insulin-like Growth Factor I(IGF-I), and IGF Binding Protein (IGFBP) in Mouse Lung Cancer Cells (마우스 폐암 세포에서 Insulin-Like Growth Factor-I (IGF-I) 및 IGF Binding Protein (IGFBP)의 역할)

  • Cho, Chul-Ho;Kim, Se-Kyu;Kwak, Seung-Min;Chang, Joon;Kim, Sung-Kyu;Chung, Kyung-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.5
    • /
    • pp.549-556
    • /
    • 2001
  • Background : IGF-I is an important mitogen in many types of malignancies. Tumors also express many IGF binding proteins, which modulate IGF action. The propose of this study was to evaluate the effect of IGF-I and IGFBP on cell proliferation in mouse lung cancer cells (3LL). Methods : The cellular proliferation of 3LL with the treatment of growth factors was evaluated using MTT assay. Western ligand blot was performed in order to determine whether 3LL cells secrete IGFBPs and we evaluated the effect of IGFBP on cellular proliferation. Results : The treatment of 3LL cells with IGF-I increased cellular proliferation in a serum free media. Western ligand blot of conditioned medium of 3LL with $^{125}I$-IGF-I demonstrated one single major band with an estimated molecular mass of 24 kDa. This band was identified as IGFBP-4 with immunoblot analysis using antisera. The addition of anti-IGFBP-4 antibody to abrogate the effect of IGFBP-4 resulted in increased cellular proliferation suggesting that IGFBP-4 inhibits cell growth. Conclusion : IGF-I increases cellular proliferation, however the secreted IGFBP-4 has an inhibitory function on cell growth in 3LL. These findings suggest that IGF-I and IGFBP are involved in the cell proliferation.

  • PDF