• Title, Summary, Keyword: Hydroxyl radical

Search Result 858, Processing Time 0.044 seconds

An Improved method in Screening of Superoxide and Hydroxyl Radical Scavenging Activities of Plant Medicinal Extracts (생약 추출물에 의한 superoxide와 hydroxyl 라디칼 소거능 검색 방법의 개선)

  • Lee, Ho-Sub;Kang, Dae-Gill
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.3
    • /
    • pp.253-256
    • /
    • 2001
  • The present study was designed for the improvement of routine measurement of superoxide and hydroxyl radical scavenging activities utilized by a microplate reader. Superoxide radical scavenging activity by the ascorbic acid, which is a well-known superoxide scavenger, was determined in a dose-dependent manner. Hydroxyl radical scavenging activity by the thiourea, which is a well-known hydroxyl radical scavenger, was also well detected in a dose-dependent manner. Our results suggest that the use of microplate reader to assay the superoxide and hydroxyl radical scavenging activities improves the accuracy of data and enables the use of much smaller amounts of samples and/or reagents, with much simpler experimental procedure. Therefore, These methods appear to be suitable for screening of superoxide and hydroxyl radical scavenging activities in both the plant medicinal extracts and the isolated compounds.

  • PDF

Effect of operating conditions of high voltage impulse on generation of hydroxyl radical (고전압 펄스의 수중인가 조건이 하이드록실 라디칼 생성에 미치는 영향)

  • Cho, Seung-Yeon;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.611-618
    • /
    • 2017
  • Recently, applications of high voltage impulse (hereafter HVI) technique to desalting, sludge solubilization and disinfection have gained great attention. However, information on how the operating condition of HVI changes the water qualities, particularly production of hydroxyl radical (${\cdot}OH$) is not sufficient yet. The aim of this study is to investigate the effect of operating conditions of the HVI on the generation of hydroxyl radical. Indirect quantification of hydroxyl radical using RNO which react with hydroxyl radical was used. The higher HVI voltage applied up to 15 kV, the more RNO decreased. However, 5 kV was not enough to produce hydroxyl radical, indicating there might be an critical voltage triggering hydroxyl radical generation. The concentration of RNO under the condition of high conductivity decreased more than those of the low conductivities. Moreover, the higher the air supplies to the HVI reactor, the greater RNO decreased. The conditions with high conductivity and/or air supply might encourage the corona discharge on the electrode surfaces, which can produce the hydroxyl radical more easily. The pH and conductivity of the sample water changed little during the course of HVI induction.

The estimation of Hydroxyl radical generation rate in Ozonation (오존산화공정에서 수산화라디칼(OH.)의 생성속도 측정)

  • 권충일;공성호;배성렬
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • During ozonation process, the hydroxyl radical generation rates were measured under different experimental conditions (ozone feed rate, nitrobenzene concentration, hydroxyl radical scavenger, pH, HO$_2$O$_2$/O$_3$ etc.) Nitrobenzene could be decomposed by hydroxyl radical rather than ozone only and nitrobenzene decomposition rate was expressed with functions of ozone and nitrobenzene concentration. The rate was decreased as the hydroxyl radical scavenger concentration was increased, and all results were followed pseudo first-order reaction. Using a competitive method, hydroxyl radical generation rate was measured with probe compound and scavenger. It was proportional to ozone concentration, and 0.24mo1 of hydroxyl radical was produced with 1mol of ozone. Under different pH conditions, hydroxyl radical generation rates were measured (pH 10.2 (0.91Ms$^{-1}$ ) > pH 7.3 (0.72Ms$^{-1}$ ) > pH 5.6 (0.67Ms$^{-1}$ ) > pH 3.4 (0.63Ms$^{-1}$ )) showing higher generation rate at high pH values. Addition of hydrogen peroxide promoted the generation rate of hydroxyl radical. Considering the results of pH experiments and addition of hydrogen peroxide experiments, the hydroxyl radical generation rate was 1.6 times higher in hydrogen peroxide solution than in high pH solution, indicating addition of hydrogen peroxide is better promoter to produce the hydroxyl radical in ozonation. These results could be applied to AOPs to remediate the contaminated wastewater and groundwater.

  • PDF

Comparison of Hydroxyl Radical, Peroxyl Radical, and Peroxynitrite Scavenging Capacity of Extracts and Active Components from Selected Medicinal Plants

  • Kwon, Do-Young;Kim, Sun-Ju;Lee, Ju-Won;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • The ability of 80% ethanol extracts from five medicinal plants, Aralia continentalis, Paeonia suffruticosa, Magnolia denudata, Anemarrhena asphodeloides, and Schizonepeta tenuifolia, to neutralize hydroxyl radical, peroxyl radical and peroxynitrite was examined using the total oxyradical scavenging capacity (TOSC) assay. Peroxyl radical was generated from thermal homolysis of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP); hydroxyl radical by an iron-ascorbate Fenton reaction; peroxynitrite by spontaneous decomposition of 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). The oxidants generated react with $\alpha$-keto-$\gamma$-methiolbutyric acid (KMBA) to yield ethylene, and the TOSC of the substances tested is quantified from their ability to inhibit ethylene formation. Extracts from P. suffruticosa, M. denudata, and S. tenuifolia were determined to be potent peroxyl radical scavenging agents with a specific TOSC (sTOSC) being at least six-fold greater than that of glutathione (GSH). These three plants also showed sTOSCs toward peroxynitrite markedly greater than sTOSC of GSH, however, only P. suffruticosa revealed a significant hydroxyl radical scavenging capacity. Seven major active constituents isolated from P. suffruticosa, quercetin, (+)-catechin, methyl gallate, gallic acid, benzoic acid, benzoyl paeoniflorin and paeoniflorin, were determined for their antioxidant potential toward peroxynitrite, peroxyl and hydroxyl radicals. Quercetin, (+)-catechin, methyl gallate, and gallic acid exhibited sTOSCs 40~85 times greater than sTOSC of GSH. These four components also showed a peroxynitrite scavenging capacity higher than at least 10-fold of GSH. For antioxidant activity against hydroxyl radical, methyl gallate was greatest followed by gallic acid and quercetin. Further studies need to be conducted to substantiate the significance of scavenging a specific oxidant in the prevention of cellular injury and disease states caused by the reactive free radical species.

Recent Advances in Advanced Oxidation Processes

  • Huang, Chin-Pao
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • /
    • pp.1-1
    • /
    • 1998
  • Advanced (Chemical) oxidation processes (AOP) differ from most conventional ones in that hydroxyl radical(OH.) is considered to be the primary oxidant. Hydroxyl radicalcan react non-selectively with a great number of organic and inorganic chemicals. The typical rate constants of true hydroxyl radical reactions are in the range of between 109 to 1012 sec-1. Many processes are possible to generate hydroxyl radical. These include physical and chemical methods and their combinations. Physical means involves the use of high energy radiation such as gamma ray, electron beam, and acoustic wave. Under an applied high energy radiation, water molecules can be decomposed to yield hydroxyl radicals or aqueous electrons. Chemical means include the use of conventional oxidants such as hydrogen peroxide and ozone, two of the most efficient oxidants in the presence of promoter or catalyst. Hydrogen peroxide in the presence of a catalyst such as divalent iron ions can readily produce hydroxyl radicals. Ozone in the presence of specific chemical species such as OH- or hydrogen peroxide, can also generate hydroxyl radicals. Finally the combination of chemical and physical means can also yield hydroxyl radicals. Hydrogen peroxide in the presence of acoustic wave or ultra violet beam can generate hydroxyl radicals. The principles for hydroxyl radical generation will be discussed. Recent case studied of AOP for water treatment and other environmental of applications will be presented. These include the treatment of contaminated soils using electro-Fenton, lechate treatment with conventional Ponton, treatment of coal for sulfur removal using sonochemical and the treatment of groundwater with enhanced sonochemical processes.

  • PDF

Antioxidant Effects and Inhibitory Effect on NO Synthesis by Extracts of Canavalia lineata (해녀콩 (Canavalia lineata (THUNB.) DC.) 추출물의 항산화 효과 및 NO 생성 억제 효과)

  • Bu, Hee-Jung;Lee, Hye-Ja;Yoo, Eun-Sook;Jung, Duk-Sang;Riu, Key-Zung;Lee, Sun-Joo
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4
    • /
    • pp.338-345
    • /
    • 2004
  • Scavenging effects of DPPH radical and hydroxyl radical, inhibition of linoleic acid oxidation, inhibition of NO synthesis and iNOS expression were tested with extracts and chromatographic subfractions of Canavalia lineata obtained at Jeju island. Chloroform extract and its subfractions gave moderate effects on scavenging DPPH radical and hydroxyl radical, They also inhibited linoleic acid oxidation, and NO synthesis. Inhibition of NO synthesis resulted from the repression of iNOS gene expression. Ethyl acetate extract and its subfractions showed excellent effects on scavenging DPPH radical and hydroxyl radical, while they were cytotoxic.

SHRINKAGE OF VITREOUS BODY CAUSED BY HYDROXYL RADICAL

  • Park, Myoung-Joo;Shimada, Takashi;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.143-150
    • /
    • 2008
  • In this study, we examined the effect of hydroxyl radical generated by $\gamma$-ray and UV irradiation on shrinkage of vitreous body. Change in gel ratio of vitreous body and change in the properties of its components (collagen, sodium hyaluronate) were analyzed. By comparing these results, the amount of hydroxyl radical, which induces the considerable shrinkage of vitreous body, was evaluated from theoretical calculation based on experimental condition and some reported kinetic parameters. It was concluded that the integrated amount of hydroxyl radical required to liquefy half of the vitreous body (Vitreous body gel ratio = 50%) was estimated as $140\;{\mu}molg^{-1}$ from $\gamma$-ray irradiation experiment. Also, from UV irradiation experiment result, it was confirmed that the effect of hydroxyl radical is larger than that of other reactive species. The causes of shrinkage of vitreous body are supposed as follows, 1) decrease in viscosity by cleavage of glycoside bond in sodium hyaluronate, 2) leaching of collagen from vitreous body and 3) leaching of crosslinked products and scission products of collagen.

Inhibitory Effect of Spermidine with Antioxidant Activity on Oxidative Stress in Human Dermal Fibroblasts (사람피부섬유아세포에서 산화적 스트레스에 대한 항산화 활성을 가진 spermidine의 억제효과)

  • Park, In-Hwan;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.693-699
    • /
    • 2011
  • Spermidine is a ubiquitous polycation that is synthesized from putrescine, which serves as a precursor of spermine. In recent years, spermidine was found to be a polyamine that plays an important role in longevity. Reactive oxygen species (ROS) such as hydroxyl radical, superoxide and hydrogen peroxide have been shown to be involved in various pathogenic processes as well as aging. The direct scavenging effect of spermidine on DPPH radical, $H_2O_2$ and hydroxyl radical, and its protective effect against DNA oxidation related to oxidative stress were evaluated in vitro. It was observed that spermidine exhibits scavenging activities on DPPH radical and H2O2 above 500 ${\mu}M$. Spermidine was especially effective in exerting a scavenging activity on hydroxyl radical. In addition, spermidine at 1000 ${\mu}M$ showed a clear protective effect against DNA oxidation. Furthermore, the expression level of anti-oxidant enzymes such as superoxide dismutase in humam dermal fibroblasts increased in the presence of spermidine compared with blank group. These results suggest that spermidine can be used as an antioxidant to prevent ROS-related diseases including inflammation, cancer and aging.

Effects of Heating on Hydroxyl Radical-Generated Toxicity in Mouse Forebrain Tissue Culture

  • Lee, Jeong-Chae;Lim, Kye-Taek
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 1998
  • This experiment was carrid out to know the effects of heating and serum on hydroxyl radicals in embryonic mouse forebrain (cerebrum) culture. The heating to mouse embryonic cerebrum cells in culture was done in a water bath at 43${\circ}C$ for 60min. After that, two supernatants were prepared at 20 hrs and 48 hrs respectively after heat treatment to the brain cells. To find out the heating effects on neuron cells, mouse cerebrum cells (13 embryonic day) were cultured in hydroxyl radical generation system composed of 20mU/ml glucose oxidase (GO system), using condition of normal culture media (MEM, 5% serum, 5% $CO_2$or supernatant prepared after heating at 43${\circ}C$ for 60 min in a water bath. Supernatant prepared at 20 hrs after heat treatment had a greater protective effects against hydroxyl radical than supernatant prepared at 48 hrs after heat treatment . Otherwise, the protective effect of serum against hydroxyl radicals in the cultured brain cells is higher than that in the heat treatment. These results indicated that serum in culture media reduced cytotoxicity of hydroxyl radicals in mouse forebrain culture, also that heat treatment showed the protective effects against hydroxyl radicals generated with 20mU/ml GO system in mouse forebrain culture.

  • PDF