• Title, Summary, Keyword: Hereditary MTC

Search Result 2, Processing Time 0.022 seconds

RET Proto Oncogene Mutation Detection and Medullary Thyroid Carcinoma Prevention

  • Yeganeh, Marjan Zarif;Sheikholeslami, Sara;Hedayati, Mehdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2107-2117
    • /
    • 2015
  • Thyroid cancer is the most common endocrine neoplasia. The medullary thyroid carcinoma (MTC) is one of the most aggressive forms of thyroid malignancy,accounting for up to 10% of all types of this disease. The mode of inheritance of MTC is autosomal dominantly and gain of function mutations in the RET proto-oncogene are well known to contribute to its development. MTC occurs as hereditary (25%) and sporadic (75%) forms. Hereditary MTC has syndromic (multiple endocrine neoplasia type 2A, B; MEN2A, MEN2B) and non-syndromic (Familial MTC, FMTC) types. Over the last two decades, elucidation of the genetic basis of tumorigenesis has provided useful screening tools for affected families. Advances in genetic screening of the RET have enabled early detection of hereditary MTCs and prophylactic thyroidectomy for relatives who may not show any symptom sof the disease. In this review we emphasize the main RET mutations in syndromic and non syndromic forms of MTC, and focus on the importance of RET genetic screening for early diagnosis and management of MTC patients, based on American Thyroid Association guidelines and genotype-phenotype correlation.

Characterization of Wild-Type and Mutated RET Proto-Oncogene Associated with Familial Medullary Thyroid Cancer

  • Masbi, Mohammad Hosein;Mohammadiasl, Javad;Galehdari, Hamid;Ahmadzadeh, Ahmad;Tabatabaiefar, Mohammad Amin;Golchin, Neda;Haghpanah, Vahid;Rahim, Fakher
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2027-2033
    • /
    • 2014
  • Background: We aimed to assess RET proto-oncogene polymorphisms in three different Iranian families with medullary thyroid cancer (MTC), and performed molecular dynamics simulations and free energy stability analysis of these mutations. Materials and Methods: This study consisted of 48 patients and their first-degree relatives with MTC confirmed by pathologic diagnosis and surgery. We performed molecular dynamics simulations and free energy stability analysis of mutations, and docking evaluation of known RET proto-oncogene inhibitors, including ZD-6474 and ponatinib, with wild-type and mutant forms. Results: The first family consisted of 27 people from four generations, in which nine had the C.G2901A (P.C634Y) mutation; the second family consisted of six people, of whom three had the C.G2901T (P.C634F) mutation, and the third family, who included 12 individuals from three generations, three having the C.G2251A (P.G691S) mutation. The automated 3D structure of RET protein was predicted using I-TASSER, and validated by various protein model verification programs that showed more than 96.3% of the residues in favored and allowed regions. The predicted instability indices of the mutated structures were greater than 40, which reveals that mutated RET protein is less thermo-stable compared to the wild-type form (35.4). Conclusions: Simultaneous study of the cancer mutations using both in silico and medical genetic procedures, as well as onco-protein inhibitor binding considering mutation-induced drug resistance, may help in better overcoming chemotherapy resistance and designing innovative drugs.