• Title/Summary/Keyword: Heavy metals

Search Result 3,045, Processing Time 0.115 seconds

Marble wastes as amendments to stabilize heavy metals in Zn-Electroplating sludge

  • Riahi, Khalifa;Chaabane, Safa;Thayer, Bechir Ben
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Powdered marble wastes (PMW) generated by Utique marble cutting industries (North of Tunisia) with abundant amounts were used in this study as low-cost materials to investigate the stabilization of heavy metals (Pb, Zn, Fe) in sludge generated from a local Zn-Electroplating factory. Powdered marble wastes were evaluated by means of chemical fractions of heavy metals in sludge and concentrations of heavy metals in leachate from columns to determine their ability to stabilize heavy metals in contaminated sludge. Results indicated that chemical fractions of heavy metals in sludge were affected by application of the PMW mineral materials and pH, however, the effects varied with heavy metals. Application of the powdered marble wastes mineral materials reduced exchangeable metals in the sequence of Pb (60.5%)>Fe (40.5%)>Zn (30.1%). X-ray diffraction and hydro-geochemical transport code PHREEQC analysis were successfully carried out to get a better understanding of the mechanisms of reactive mineral phases involved in reduced exchangeable heavy metals in sludge after PMW material amendments. Therefore, metal immobilization using powdered marble wastes materials is an effective stabilization technique for industrial metallic hydroxide sludge.

Effect of Groundwater Anions and pH on the Sorption Removal of Heavy Metals by Bentonite (벤토나이트의 중금속 흡착제거에 대한 pH와 지하수 음이온의 영향)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.31-40
    • /
    • 2000
  • Sorption characteristics of Pb, Cu, Cd, and Zn onto Ca- and Na-bentonites were investigated by the batch experiments in the condition of various pHs and concentrations of groundwater major anions (${So_4}^{2-}$ and ($HCO_3$), which can form a complex with heavy metals. The sorption removal of heavy metals steadily increases as pH increases. The sorption capability about heavy metals of both Ca-bentonite and Na-bentonite is in the order of Pb>Cu>Zn>Cd. The effect of pH and selectivity of heavy metals of bentonites were explained by the change of surface charge of bentonite and the speciation of heavy metals. Na-bentonite has a little higher sorption ability about heavy metals than that of Ca-bentonite. A high sorption removal of Pb in 0.1M sulfate solution may be attributed to the precipitation of $PbSo_4$(anglesite). However, sulfate has a slight effect on the sorption of CU, Cd and Zn. More than 99% of heavy metals were removed from the 0.1 M bicarbonate solution. However, the efficiency of sorption removal of heavy metals highly decreases in the bicarbonate solution of $10^{-2}$M to $10^{-4}$M. The speciation and saturation index calculated by the WATEQ4F program indicate that the sorption of anionic complexes such as ${Pb(CO_3)_2}^{2-}$, ${Cd(CO_3)_2}^{2-}$, ${Zn(CO_3)_2}^{2-}$, ${Cu(CO_3)_2}^{2-}$ and the precipitation of the solid phases such as $PbCO_3$(cerrusite), $ZnCO_3$(smithsonite), $CdCO_3$(obtavite) are involved in sorption removal of heavy metals in bicarbonate solution. The sorption capability about heavy metals of bentonites in the presence of anions shows the following order: Pb>Cu Cd>Zn.

  • PDF

Distributions and Correlation of Heavy Metals Sediment, Soil, Weeds and Vegetables on Lower Nakdong River (낙동강 하류 유역의 저니토, 토양, 잡초 및 채소 중의 중금속의 분포와 상관관계)

  • Jeong, Gi-Ho;Kim, Moon-Soon;Jeong, Jong-Hak
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.801-812
    • /
    • 1996
  • We investigated concentrations of heavy metals(Cr, Cd, Zn, Fe, Pb, Cu, and Mnl and correlations between concentrations of heavy metals in the sediment, soil, weeds, and vegetables on the lower Nakdong river. Concentrations of heavy metals on the lower Milyang river was generally lower than those of other sampling area. In the soil, concentration of Pb is generally larger than that of other heavy metals. Generally, concentrations of heavy metals in the sediment show decreasing tendency 8s the sampling area moves toward downstream of the river, but those of in the soil and weeds show increasing tendency. There is no significant correlation between concentration of heavy metals in the soil-sediment, soil-vegetables, sediment-weeds, or vegetables-weeds. Only concentrations of Pb in the vegetables and those of in the weeds show very high correlation.

  • PDF

Effects of heavy metals on contents of various phosphate compounds and organic compounds in chlorella cells (Chlorella의 인산화합물 및 유기물함량에 미치는 중금속의 영향)

  • 이종삼;임영복
    • Korean Journal of Microbiology
    • /
    • v.20 no.1
    • /
    • pp.27-40
    • /
    • 1982
  • The effects of heavy metals on the growth rate and phosphate metabolism of Chlorella elliposidea cells were investigated. Chlorella cells were cultured in the media treated with Hg(0.3, 0.7, 0.9 ppm), Cd(1, 5, 15ppm), and Zn(1, 5, 50ppm) for 6days. Aliquots cells were taken out at the inoculation and at intervals during the culture, and measured packed cell vlolume and optical density. The inhibitions of heavy metals on the growth rate and chlorophyll contents were traced. Also after 6 days culture, the amounts of inorganic phosphate and organic compounds of various fractions in Chlorella cells were observed. The turbid effects of heavy metals on the growth rate and chlorphyll contents of Chlorella cells were in order of Hg>Cd>Zn. Because heavy metals depressed the biosynthesis of inorganic polyphosphates and nucleic acids and turn over of inorganic phosphates, the amounts of various phosphate compounds were decreased. The inhibitory effect of photosynthesis by heavy metals resulted in lower contents of carbohydrate. Due to the turbidity of biosynthesis of amino acids by heavy metals, contents of protein were reduced in comparison with those of control. It is suggested conciusively that the minimum concentrations affected by heavy metals on the growth rate and phosphate metabolism of Chlorella cells were 0.7 ppm Hg, 15ppm Cd, 50ppm Zn.

  • PDF

Recycling of Biological Industrial Waste as an Adsorbent for Heavy Metals (중금속 제거를 위한 흡착제로서 생물산업 폐기물의 재활용)

  • 장재선;이제만;김용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.7-13
    • /
    • 2002
  • The removal efficiency of heavy metals by chitosan complex isolated from biological industrial waste was investigated through laboratory experiments. The results of the study are as follows. The adsorption kinetics of heavy metals were reached the equilibrium adsorption in approximately 30 minutes and the removal efficiency were showed 70.7~97.4%. The effect of temperature on heavy metals adsorption by chitosan complex shows that as the temperature increased, the amount of heavy metals adsorption per unit weight of chitosan complex increased. The correlation between amount of heavy metals adsorption per unit weight of chitosan complex and temperature were obtained through the coefficient of determination($R^2$). $R^2$ values were 0.75(p<0.05), 0.99(p<0.05) and 0.98(p<0.05) in Hg, Mn, and Zn, respectively. The injected chitosan complex in which 0.1 g was adsorpted highly and the removal of heavy metals was found to have the best removal efficiency A linearized Freundlich equation was used to fit the acquired experimental data. As a result, Freundlich constants, the adsorption intensity(I/n) was 0.5564, 0.4074, 0.5244 on the Hg, Mn, Zn, respectively And the measure of adsorption(k) was 2.2144, 1.6963, 2.0792 on the Hg, Mn, Zn, respectively. So, it was concluded that adsorption of heavy metals by chitosan complex is effective.

Measurement of Hazardous Substances in Children's Goods at Schools in Seoul (휴대용 XRF를 이용한 서울시 학교 내 어린이용품 중 일부 유해물질 함량 조사)

  • Kim, KyooSang;Park, Hyunkyung;Choi, Gilyoung;Lim, Wanryong;Shin, Kyoojin
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.176-184
    • /
    • 2017
  • Objectives: Excluding in their homes, children spend most of their time at an elementary school, daycare center, and/or kindergarten. For educational or recreational purposes, they make use of many children's goods at these places. Some children's goods contain phthalates and heavy metals with polyvinyl chloride (PVC), so due to their physiological and behavioral characteristics children are exposed to high concentrations of phthalates and heavy metals. This study aims to measure PVC and heavy metals, which are harmful substances in children's goods which can have an effect on children's health. Methods: Six samples of children's goods were selected through cases of detected harmful substances and the results of previous research, including assembly blocks, model toys, household toys, bags, indoor play equipment, and floor mats. The selected items were measured using X-Ray Fluorescence (XRF), and the presence and content of environmentally harmful substances such as PVC or heavy metals in the materials of children's goods were examined. Results: The highest detection rate for PVC was observed in floor mats, and bags and indoor play equipment were higher than other goods in this regard. The highest detection rate for heavy metals was found in bags, followed by indoor play equipment, assembly blocks, household toys, model toys and floor mats. Except for bags containing heavy metals, five goods showed the highest level of Pb compared to other heavy metals. Floor mats contained the highest level of Pb, Cr, and Cu among all goods. Conclusion: Many children's goods contain PVC and heavy metals, and high levels of heavy metals have been detected in some goods. It is necessary to manage children's goods to support their health.

Rejection Characteristics of Various Heavy Metals by Low-pressure Nanofiltration (저압나노여과에 의한 각종 중금속의 제거 특성)

  • Oh, Jeong-Ik;Kim, Han-Seung;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Rejection characteristics of heavy metals by nanofiltration membranes were investigated. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. In particular, the separation coefficient of arsenic against chloride ion and TOC was larger than any other separation coefficient of heavy metals. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

Effect of Sludge Concentration on Removal of Heavy Metals from Digested Sludge by Thiobacillus ferrooxidans (Thiobacillus ferrooxidans를 이용한 소화 슬러지의 중금속 제거에 미치는 슬러지 농도의 영향)

  • 류희욱;김윤정;조경숙;강근석;최형민
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.279-283
    • /
    • 1998
  • To investigate the feasibility of the microbial process for removal of heavy metals from the high solid content sludge, the effect of sludge concentration on the solubilization of heavy metals by an iron oxidizing bacterium Thiolbacillus ferrooxidans was examined. With increasing the sludge concentration, the removal efficiency of heavy metals and the oxidation rate of iron were inhibited. Especially, when the sludge concentration is over 5% (w/v), the activity of T. ferrooxidans was remarkably inhibited. This inhibition is considered to occur due to the dissolved inhibitory materials such as organic compounds, heavy metals, and others which were extracted from the sludge during incubation period. In conclusion, the microbial process by T. ferrooxidans is only effectively used in ranges of 1.3 to 4.0% (w/v) sludge concentration.

  • PDF

Characteristics and Status of Persistent Organic Pollutants and Heavy Metals in Ambient Air (대기 중 잔류성 유기오염물질과 중금속의 특성과 현황)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.113-132
    • /
    • 2003
  • In May 2001, the Stockholm Convention on Persistent Organic Pollutants (POPs) for phasing out and eliminating POPs was signed by 90 countries at the Diplomatic Meeting in Stockholm. In 1998, three years before the Convention, the protocols on POPs and heavy metals were adopted by the United Nations Economic Commission for Europe under the Convention on Long-Range Transboundary Air Pollution. Growing attention on POPs and heavy metals during the past 10 years is primarily due to their toxicity in minute quantities. POPs and some metal compounds are even more toxic because of their bioaccumulation potentials associated with a high lipid solubility. Furthermore, owing to their persistence and semi - volatility, they are widely distributed in the environment, traveling great distances on wind and water currents. Recent international cooperation to address POPs and heavy metals has focused on these issues. Long -range transport of those pollutants are particularly concerned since Korea is located downwind of prevailing westerlies from China. In this paper, a review is provided to assess the properties, sources, emissions, and atmospheric concentrations on POPs and heavy metals.

Effects of Some Heavy Metals(Al, Cd, Hg, and Pb) on ATP Content in Plant Leaves (식물엽의 ATP함량에 미치는 중금속(Al, Cd, Hg 및 Pb)의 영향)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.22 no.4
    • /
    • pp.107-113
    • /
    • 1979
  • The present study was carried out to estimate the comparative effects of hydroponic heavy metals (Al, Cd, Hg, and Pb) on ATP content in plant leaves grown with Hoagland solution under green house condition. The two plants, kidneybean(Phaseolus vulgaris L.) and buckwheat(Fagopyrum esculentum M nch), showed similar inhibitory effect of heavy metals on ATP content in order of Hg, Cd, Pb, and Al. But the overall inhibitory effect was greater in kidneybean than in buckwheat. The affinity of heavy metals, in vitro, toward the enzyme (luciferin-luciferase) is in order of Hg, Al, Cd, and Pb, similar to that toward ATP. The results showed that the inhibitory effect of heavy metals on ATP hydrolysis is mainly due to the coordination of heavy metals with enzyme than ATP.

  • PDF