• Title, Summary, Keyword: Heat flux

Search Result 2,183, Processing Time 0.047 seconds

A Study on the Analysis of Surface Heat Flux Using the Transient Heat Flux Method (비정상열유속 기법을 이용한 표면 열유속 해석에 관한 연구)

  • Yi, Jong-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.503-510
    • /
    • 2010
  • The quick variation of the canister wall temperature causes the modification of the shape of canister wall. This paper is the possibility of adoption and the error analysis about the transient heat flux method. The commercial code(Fluent Ver6.2.16) was employed for the calculation of surface temperature in the case of steady and unsteady heat flux condition. Based the surface temperature variation and surface material property, transient heat flux method can calculate the surface heat flux. In the case of steady heat flux condition, the error is about 2%, and in the case of unsteady heat flux condition, the error is about 3.6%. With the unsteady heat flux condition, the time which reach the maximum surface heat flux is almost same between the numerical analysis and transient heat flux method.

Performance Comparison of an Urban Canopy Model under Different Meteorological Conditions (기상 조건에 따른 도시 캐노피 모형의 성능 비교)

  • Ryu, Young-Hee;Baik, Jong-Jin;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.429-436
    • /
    • 2012
  • The performances of the Seoul National University Urban Canopy Model (SNUUCM) under different meteorological conditions (clear, cloudy, and rainy conditions) in summertime are compared using observation dataset obtained at an urban site. The daily-averaged net radiation, sensible heat flux, and storage heat flux are largest in clear days and smallest in rainy days, but the daily-averaged latent heat flux is similar among clear, cloudy, and rainy days. That is, the ratio of latent heat flux to net radiation increases in order of clear, cloudy, and rainy conditions. In general, the performance of the SNUUCM is better in clear days than in cloudy or rainy days. However, the performance in simulating sensible heat flux in clear days is as poor as that in rainy days. For all the meteorological conditions, the performance in simulating latent heat flux is worst among the performances in simulating net radiation, sensible heat flux, and latent heat flux. The normalized mean error for latent heat flux is largest in rainy days in which the relative importance of latent heat flux in the surface energy balance becomes greatest among the three conditions. This study suggests that improvements to the parameterization of processes that are related to latent heat flux are particularly needed.

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

A study on the measurement of Radiative Heat flux form the flame(I) -Design and Calibration of a Heat flux meter- (화염으로부터의 복사 열유속의 계측 I)

  • 정종수;인종수;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.484-491
    • /
    • 1990
  • A heat-flux meter has been designed and manufactured to measure the heat flux from the flame. A calibration method of the heat-flux meter by a calibration furnace has also been proposed. The k-type (Chromel-Alumel) thermocouple material has been used as the material for the beat-flux meter. The electormotive force (e.m.f.) from the K-type thermocouple is shown to be linearly proportional to the heat flux absorbed. The characteristics of the heat-flux meter become better as the radius of heat absorbing disk becomes larger and its thickness thinner.

Heat Fluxes in the Marine Atmospheric Surface Layer around the Korean Peninsula based on Satellite Data (위성자료를 이용한 한반도 주변 해상 대기표층의 열속)

  • HONG, Gi-Man;KWON, Byung-Hyuk;KIM, Young-Seup
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.2
    • /
    • pp.209-217
    • /
    • 2005
  • The energy balance of the surface layer of the water (the Yellow Sea, the East China Sea and the East Sea) was examined using satellite data. Variations of the net heat flux were similar to those of the latent heat flux which was more intensive than the sensible heat flux. The sensible heat flux was affected the difference between the sea surface temperature and the air temperature and was less important over the Yellow Sea. The maximum of the latent heat flux occurred in autumn when the air is drier and the wind is stronger. The shortwave radiation flux decreased with the latitude and depended on the cloudiness as the longwave radiation flux does. Annual variations of heat fluxes show that the latent heat flux was more intensive over the East China Sea than the East Sea and the Yellow Sea, while the spatial differences of the other heat fluxes were weak.

Latent Heat Flux over the Global Ocean

  • Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.644-648
    • /
    • 2002
  • Though it was difficult of globally monitor latent heat flux aver the ocean for many years, the situation is rapidly changing by the use of satellite data. Since a bulk formula is used to estimate turbulent heat flux using satellite data, we need wind speed, sea surface temperature and specific humidity data. However, it is not easy to accurately estimate specific humidity using satellite data. Now several algorithms for estimating specific humidity have been proposed and applied to construct latent heat flux data sets. Latent heat flux data sets derived from satellite data such as J-OFURO, HOAPS and GSSTF are available at present. Since the algorithm and used satellite data are not the same between them. the characteristics of each data set may be different. Therefore, it is important to clarify the difference between each data set and investigate the cause of the difference in latent heat flux estimates. In this paper we summarize the present state of the art with regard to the turbulent heat flux estimation by using satellite data. Also we present the comparison results of latent heat flux fields including not only satellite-derived flux fields but also analysis fields.

  • PDF

ACCURATE ESTIMATION OF GLOBAL LATENT HEAT FLUX USING MULTI-SATELLITE DATA

  • Tomita Hiroyuki;Kubota Masahisa
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.14-17
    • /
    • 2005
  • Global latent heat flux data sets are crucial for many studies such as those related to air-sea interaction and climate variation. Currently, various global latent heat flux data sets are constructed using satellite data. Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) includes one of the satellite-derived global latent heat flux data (Kubota et aI., 2000). In this study, we review future development of J-OFURO global latent heat flux data set. In particular, we investigate usage of multi-satellite data for estimating accurate global latent heat flux. Accurate estimation of surface wind speeds over the global ocean is one of key factors for the improved estimation of global latent heat flux. First, we demonstrate improvement of daily wind speed estimation using multi-satellites data from microwave radiometers and scatterometers such as DMSP/SSMI, ERS/AMI, QuikSCAT/SeaWinds, AqualAMSR-E, ADEOS2/AMSR etc. Next, we demonstrate improvement of global latent heat flux estimation using the wind speed data derived from multi-satellite data.

  • PDF

A Study of a Heat Flux Mapping Procedure to Overcome the Limitation of Heat Flux Gauges in Fire Tests (화재실험시 열유속 센서 사용의 단점을 보완한 Heat Flux Mapping Procedure에 관한 연구)

  • Choi, Keum-Ran
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4
    • /
    • pp.171-179
    • /
    • 2005
  • It is essential to understand the role of wall lining materials when they are exposed to a fire from an ignition source. Full-scale test methods permit an assessment of the performance of a wall lining material. Fire growth models have been developed due to the costly expense associated with full-scale testing. The models require heat flux maps from the ignition burner flame as input data. Work to date was impeded by a lack of detailed spatial characterization of the heat flux maps due to the use of limited instrumentation. To increase the power of fire modeling, accurate and detailed heat flux maps from the ignition burner are essential. High level spatial resolution for surface temperature can be provided from an infrared camera. The objective of this study was to develop a heat flux mapping procedure for a room test burner flame to a wall configuration with surface temperature information taken from an infrared camera. A prototype experiment was performed using the ISO 9705 test burner to demonstrate the developed heat flux mapping procedure. The results of the experiment allow the heat flux and spatial resolutions of the method to be determined and compared to the methods currently available.

Surface Heat Budget of the Northern Sea of Cheju Island for June-August 1993 and 1994 (제주도 북부해역의 표면 열수지 해석 -1993년과 1994년 하계의 경우-)

  • 김해동;양성기
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.197-206
    • /
    • 1995
  • Surface heat balance of the northern sea of Cheju Island for summer in 1993 and 1994 is analyzed using the observation data obtained by Marine Research Institute, Cheju National University. Each flux elements at the sea surface is derived from the marine meteorological reports with application of an aerodynamical bulk method for the turbulent heat fluxes, and empirical formulae for the long-wave radiation heat fluxes. The flux divergence of oceanic heat transport and the rate of heat storage in the ocean are estimated as residual. The features of the surface heat balance are mainly decided by the solar radiation flux and the latent heat flux for 199B. But the Bowen Ratios were large for 1993. This means that the sensible heat fluxes were nearly equal to the latent heat fluxes for 1993. In this period, mean flux divergence of oceanic heat transport is about 130 W/$m^2$.

  • PDF