• Title, Summary, Keyword: HUVECs

Search Result 159, Processing Time 0.035 seconds

Effect of ChungHuyl-Plus on inflammatory factors in Human Umbilical Vein Endothelial Cells (HUVECs) (청혈플러스가 혈관내피세포에서 염증 지표인자에 미치는 영향)

  • Seo, Dong-hyo;Joo, In-Hwan;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.27 no.2
    • /
    • pp.11-20
    • /
    • 2018
  • Objectives : Coronary and cerebrovascular disease with high mortality is a major factor in arteriosclerosis. Pro-inflammatory cytokines damage vascular endothelial cells, leading to vascular inflammation. These vascular inflammation can build up cholesterol and thrombus to cause atherosclerosis. Methods : In this study, we researched the effect of ChungHyul-Plus for vascular inflammation in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Change in mRNA expression of inflammatory cytokines (CCL5, CXCL8, CX3CL1, and MCP-1), cell adhesion molecules (VCAM-1 and ICAM-1), and anti-inflammation modulators (KLF2 and eNOS) were quantified by qRT-PCR. Results : ChungHyul-Plus decreased expression of inflammatory cytokines and cell adhesion molecules and increased anti-inflammation modulators expression in $TNF-{\alpha}$ stimulated HUVECs. Conclusions : These results suggest that ChungHyul-Plus can be used in the treatment and prevention of vascular inflammation and arteriosclerosis.

Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction

  • Do, Moon Ho;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John's Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.

Identification of Marker Genes Related to Cardiovascular Toxicity of Doxorubicin and Daunorubicin in Human Umbilical Vein Endothelial Cells (HUVECs)

  • Kim, Youn-Jung;Lee, Ha-Eun;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.246-253
    • /
    • 2007
  • Doxorubicin and daunorubicin are excellent chemotherapeutic agents utilized for several types of cancer but the irreversible cardiac damage is the major limitation for its use. The biochemical mechanisms of doxorubicin- and daunorubicin- induced cardiotoxicity remain unclear. There are many reports on toxicity of doxorubicin and doxorubicin in cardiomyocytes, but effects in cardiovascular system by these drugs are almost not reported. In this study, we investigated gene expression profiles in human umbilical vein endothelial cells (HUVECs) to better understand the causes of doxorubicin and doxorubicininduced cardiovascular toxicity and to identify differentially expressed genes (DEGs). Through the clustering analysis of gene expression profiles, we identified 124 up-regulated common genes and 298 down-regulated common genes changed by more than 1.5-fold by all two cardiac toxicants. HUVECs responded to doxorubicin and doxorubicin damage by increasing levels of apoptosis, oxidative stress, EGF and lipid metabolism related genes. By clustering analysis, we identified some genes as potential markers on apoptosis effects of doxorubicin and doxorubicin. Six genes of these, BBC3, APLP1, FAS, TP53INP, BIRC5 and DAPK were the most significantly affected by doxorubicin and doxorubicin. Thus, this study suggests that these differentially expressed genes may play an important role in the cardiovascular toxic effects and have significant potential as novel biomarkers to doxorubicin and doxorubicin exposure.

Effect of Hepatocyte Growth Factor on the Migration of Human Umbilical Vein Endothelial Cells (혈관내피세포의 이동에 미치는 Hepatocyte Growth Factor의 영향)

  • 오인숙;소상섭;김환규
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.485-489
    • /
    • 2003
  • Hepatocyte growth factor (HGF) is a mesenchymal-derived cytokine. It exerts a motogenic effect on various target cells, which is displayed either by cell scattering, locomotion, and migration during the wound repair process of cultured cells, or invasiveness through the extracellular matrix, in vitro. Although it is known that HGF influences the motogenic effect of endothelial cells, the precise effects of HGF during migration are still poorly understood. To elucidate the role of HGF in endothelial cell migration, the effect of HGF on endothelial cell migration and MMPs and plasmin production were studied. We found that HGF induces the migration of cultured endothelial cells through increased MMPs and plasmin secretion.

Tanshinone IIA Protects Endothelial Cells from H2O2-Induced Injuries via PXR Activation

  • Zhu, Haiyan;Chen, Zhiwu;Ma, Zengchun;Tan, Hongling;Xiao, Chengrong;Tang, Xianglin;Zhang, Boli;Wang, Yuguang;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.599-608
    • /
    • 2017
  • Tanshinone IIA (Tan IIA) is a pharmacologically active substance extracted from the rhizome of Salvia miltiorrhiza Bunge (also known as the Chinese herb Danshen), and is widely used to treat atherosclerosis. The pregnane X receptor (PXR) is a nuclear receptor that is a key regulator of xenobiotic and endobiotic detoxification. Tan IIA is an efficacious PXR agonist that has a potential protective effect on endothelial injuries induced by xenobiotics and endobiotics via PXR activation. Previously numerous studies have demonstrated the possible effects of Tan IIA on human umbilical vein endothelial cells, but the further mechanism for its exerts the protective effect is not well established. To study the protective effects of Tan IIA against hydrogen peroxide ($H_2O_2$) in human umbilical vein endothelial cells (HUVECs), we pretreated cells with or without different concentrations of Tan IIA for 24 h, then exposed the cells to $400{\mu}M$ $H_2O_2$ for another 3 h. Therefore, our data strongly suggests that Tan IIA may lead to increased regeneration of glutathione (GSH) from the glutathione disulfide (GSSG) produced during the GSH peroxidase-catalyzed decomposition of $H_2O_2$ in HUVECs, and the PXR plays a significant role in this process. Tan IIA may also exert protective effects against $H_2O_2$-induced apoptosis through the mitochondrial apoptosis pathway associated with the participation of PXR. Tan IIA protected HUVECs from inflammatory mediators triggered by $H_2O_2$ via PXR activation. In conclusion, Tan IIA protected HUVECs against $H_2O_2$-induced cell injury through PXR-dependent mechanisms.

Screening and Mechanism Study of Angiogenesis in Many Herbs Medicine (수종의 한약재에서 신생혈관형성 활성 검색 및 기전 연구)

  • Huh, Jeong-Eun;Baek, Yong-Hyeon;Lee, Jae-Dong;Choi, Do-Young;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.24 no.5
    • /
    • pp.23-32
    • /
    • 2007
  • Objectives : Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine whether herbs medicine(KHBJs) could induce angiogenic activity in human umbilical vein endothelial cells(HUVECs). Methods : The angiogenic activity of KHBJs were evaluated by proliferation using BrdU assay, chemotactic migration assay, tube formation assay, and measurement of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor(VEGF) in HUVECs. Also, In order to identify enhance angiogenic activity by activity guided fractionation, the angiogenic activity of fractions of KHBJs such as KHBJB or KHBJR were evaluated in vitro and in vivo Matrigel plug angiogenesis asaay. Results : About 9 KHBJs significantly increased HUVECs proliferation in a dose-dependent manner. In addition, 9 herbs medicine(KHBJs) increased migration and tube-like formation in HUVECs. Interestingly the expression of bFGF and VEGF, an angiogenesis-inducing growth factor, were dose-dependently increased by KHBJs. However, angiogenic activity of fractionated KHBJs(KHBJB or KHBJR) not enhanced more than KHBJs in HUVECs and Matrigel plug in vivo angiogenesis assay. Conclusions : 9 KHBJs significantly induces angiogenesis in in vitro and in vivo. These results suggest that 9 KHBJs potent angiogenic agents and promising drug for the induction of neovascularization.

  • PDF

Serial MR Imaging of Magnetically Labeled Humen Umbilical Vein Endothelial Cells in Acute Renal Failure Rat Model (급성 신부전 쥐 모델에서 자기 표지된 인간 제대정맥 내피세포의 연속 자기공명영상)

  • Lee, Sun Joo;Lee, Sang Yong;Kang, Kyung Pyo;Kim, Won;Park, Sung Kwang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.181-191
    • /
    • 2013
  • Purpose : To evaluate the usefulness of in vivo magnetic resonance (MR) imaging for tracking intravenously injected superparamagnetic iron oxide (SPIO)-labeled human umbilical vein endothelial cells (HUVECs) in an acute renal failure (ARF) rat model. Materials and Methods: HUVECs were labeled with SPIO and poly-L-lysine (PLL) complex. Relaxation rates at 1.5-T MR, cell viability, and labeling stability were assessed. HUVECs were injected into the tail vein of ARF rats (labeled cells in 10 rats, unlabeled cells in 2 rats). Follow-up serial $T2^*$-weighted gradient-echo MR imaging was performed at 1, 3, 5 and 7 days after injection, and the MR findings were compared with histologic findings. Results: There was an average of $98.4{\pm}2.4%$ Prussian blue stain-positive cells after labeling with SPIOPLL complex. Relaxation rates ($R2^*$) of all cultured HUVECs at day 3 and 5 were not markedly decreased compared with that at day 1. The stability of SPIO in HUVECs was maintained during the proliferation of HUVECs in culture media. In the presence of left unilateral renal artery ischemia, $T2^*$-weighted MR imaging performed 1 day after the intravenous injection of labeled HUVECs revealed a significant signal intensity (SI) loss exclusively in the left renal outer medulla regions, but not in the right kidney. The MR imaging findings at days 3, 5 and 7 after intravenous injection of HUVECs showed a SI loss in the outer medulla regions of the ischemically injured kidney, but the SI progressively recovered with time and the right kidney did not have a significant change in SI in the same period. Upon histologic analysis, the SI loss on MR images was correspondent to the presence of Prussian blue stained cells, primarily in the renal outer medulla. Conclusion: MR imaging appears to be useful for in vivo monitoring of intravenously injected SPIO-labeled HUVECs in an ischemically injured rat kidney.

Vascular Endothelial Growth Factor Upregulates Follistatin in Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10ng/L) produced an approximately 11.8-fold increase of FS mRNA. F5 or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FS in vitro.

Inhibitory Activity of Edible Plant Extracts on Proliferation of Human Umbilical Vein Endothelial Cells (HUVECs)

  • Song, Myoung-Chong;Kim, Sung-Hoon;Kwak, Ho-Young;Yang, Hye-Joung;Bang, Myun-Ho;Chung, In-Sik;Lee, Youn-Hyung;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.249-253
    • /
    • 2007
  • Thirteen edible plants previously reported to show inhibitory activities on farnesyl protein transferase (FPTase) and phosphatase of the regenerating liver-3 (PRL-3) were evaluated for inhibitory activity on the proliferation of human umbilical vein endothelial cells (HUVECs). Four plant extracts, Oenothera erythrosepala, Perilla frutescens, Panicum miliaceum, and Quercus acutissima, significantly inhibited the proliferation of HUVECs induced by the basic fibroblast growth factor (bFGF) without cytotoxicity at 100 ${\mu}g/mL$. Myristica fragrans, Rosmarinus officinalis, and Syringa patula also showed inhibitory activity on the proliferation with only mild cytotoxicity.

Protective Effect of Padina arborescens Extract against High Glucose-induced Oxidative Damage in Human Umbilical Vein Endothelial Cells

  • Park, Mi Hwa;Han, Ji Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Dysfunction of endothelial cells is considered a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of Padina arborescens extract against high glucose-induced oxidative damage in human umbilical vein endothelial cells (HUVECs). High-concentration of glucose (30 mM) treatment induced cytotoxicity whereas Padina arborescens extract protected the cells from high glucose-induced damage and significantly restored cell viability. In addition, lipid peroxidation, intracellular reactive oxygen species (ROS), and nitric oxide (NO) levels induced by high glucose treatment were effectively inhibited by treatment of Padina arborescens extract in a dose-dependent manner. High glucose treatment also induced the overexpressions of inducible nitric oxide synthase (iNOS), cyclooxygenase- 2 (COX-2) and NF-${\kappa}B$ proteins in HUVECs, but Padina arborescens extract treatment reduced the over-expressions of these proteins. These findings indicate the potential benefits of Padina arborescens extract as a valuable source in reducing the oxidative damage induced by high glucose.