• Title, Summary, Keyword: Granulosa Cell

Search Result 171, Processing Time 0.039 seconds

Flow Cytometric Analysis of Bovine Granulosa Cells : Changes of Cell Cycle During Follicular Maturation (Flow Cytometer를 이용한 소 과립막세포의 분석 : 난포성숙에 따른 세포주기의 변화)

  • 김해정;김동훈;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.279-285
    • /
    • 1994
  • The objective of the present study was to characterize the cell cycles of granulosa cell populations during follicular maturation in cattle by using flow cytometer. Granulosa cells were isolated from bovine preovulatory antral follicles of F1(>10mm), F2(5~20mm), F3(3~4mm) and F4(1~2mm) diameter and fixed and stained with fluorochromes that selectively bine to DNA. Flow cytometer equipped with a laser excitation system was used to analyze the intensity of fluorescence from stained cells. Forward angle light-scatter(FSC) and 90$^{\circ}$light-scatter(SSC) signals were adopted to measure the size and the granularity of granulosa cells. As a results of FSC/SSC analysis, granulosa cell populations(G1 phase of cell cycle) from each follicle were relatively regular in size and granularity, regardless of follicular size. However, their distribution in granularity was greater than that in size. Most of granulosa cell populations collected from each follicle were distributed in G0/G1, S and G2/M phases. As the follicles approached to ovulation the percentage of cells in the proliferative phases of cell cycle (S and G2/M) decreased significantly, but there was a concomitant increase in the percentage of granulosa cells in G1 phase. Therefore, these data indicate the proportion of main populations to cell cycle of granulosa cells may be changed from proliferative phase to G1 phase during follicular maturation in cattle.

  • PDF

Meiotic Competence of Caprine Oocytes During IVM on Granulosa Cell Monolayers Developed from Small and Large Follicles in Comparison to the Granulosa Cell Coculture

  • Sharma, G. Taru;Teotia, Alok;Majumdar, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.777-784
    • /
    • 2001
  • Evaluation of the granulosa cell (GC) monolayers developed from small (<5 mm) and large (>5 mm) follicles on the meiotic competence of caprine oocytes during in vitro maturation was done in this study in comparison to the granulosa cell coculture. Ovaries were collected from the local abattoir and follicular contents were aspirated for the monolayer culture. For IVM the oocytes were collected by puncturing the nonatretic follicles (>4 mm). Results revealed that at the same seeding rate, small follicular granulosa cell monolayer achieved confluence 24-48 h earlier than large follicular granulosa cell monolayer. GC monolayers significantly p (<0.05) improved the rate of meiotic resumption and nuclear maturation (84.76% vs 74.74%) after 27 h of culture in comparison to GC coculture. Statistically there was no significant difference in the maturation rate between the caprine oocytes matured over small or large follicular GC monolayers. It is concluded from the present study that GC monolayers support better nuclear and cytoplasmic maturation of growing caprine oocytes which is evident by better maturation rate over GC monolayer as compared to the oocytes matured with GC coculture. Granulosa cells from small and large follicles can be used for IVM with more or less in the same efficiency after conditioning them with maturation media in 18-24 h before the onset of culture.

Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

  • Kim, So-Youn
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development.

Effects of Co-Culture with Granulosa Cells on In Vitro Fertilization and Cleavage of Bovine Extrafollicular Oocytes (과립막세포와의 Co-Culture가 소 난포란의 체외수정과 분할에 미치는 영향)

  • 신태영;조충호;황광남;황우석
    • Journal of Embryo Transfer
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 1991
  • The present study was performed to investigate the effects of co-culture with granulosa cells on in vitro fertilization and cleavage of early bovine embryo development. Bovine oocytes were matured for 20-24 hrs in vitro with granulosa cells or without and then fertilized in vitro using frozen-thawed spermatozoa treated with BO-caffeine, BO-BSA(2OmM heparin added). At l8hrs after insemination, oocytes were fixed and examined or further cultured in TCM 199 for 48hrs. The fertilization rates between the control(70.4%) and the groups of co-cultured with granulosa cell(2.5$\times$106 cells/ml; 71.6%, 5.0$\times$ 106/ml; 71.9%, l.0$\times$ 107/ml; 71.1%) did not differ significantly. The cleavage rates in the groups co-cultured with granulosa cell(2.5$\times$ 106 cells/mi; 43.6%, 5.0$\times$ 106/ml; 46.8%. l.0$\times$ 107/ml; 45.0%)were significantly higher than that of without granulosa cell, respectively(P<0.05). However there were no significant differences between the groups co-cultured with granulosa cells. The result indicated that co-culture with granulosa cell was effective means to cleavage of bovine follicular oocytes but did not affect the in vitro fertilization.

  • PDF

Studies on the Regulation of Ovarian Granulosa Cell Apoptosis by Gonadotropins and Nitric Oxide (생식소 자극 호르몬과 Nitric Oxide에 의한 난소 과립세포의 Apoptosis 조절에 대한 연구)

  • 이석자
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.157-164
    • /
    • 1997
  • To study the regulation of porcine follicular cell apostosis by gonadotropin, steroid, and nitric oxide, we analyzed DNA fragmentation, the hallmark of apoptosis, and nitrite production of porcine granulosa cells. Dissected indiidual follicles from ovary were separated in size (small, 2-3 mm; medium, 5-6 mm; large, 7-8 mm) and isolated granulosa cells were classified morpholocally as atretic or nonatretic. Nitrite concentration was measured by mixing follicular fluids with an equal volume of Griess reagent. Follicular nitric oxide (NO) concentration of healthy follicles was higher than that of atretic follicles. Apoptotic DNA fragmentation was suppressed in non-apoptotic granulosa cells. Follicular apoptosis was induced by androgen but prevented by gonadotropin in vitro. Apoptosis was confined to the granulosa cells. But it was not clear whether apoptosis of granulosa cells were isolated, incubated with or without gonadotropin, androgen and sodium nitroprusside (SNP), respectively at $37^{\circ}C$ for 24 hrs. Cultured granulosa cells were used to extract genomic DNA and culture media was asssayed for nitrite concentration. Nitrite production of culture media was increased, while apoptotic DNA fragmentation was suppressed in PMSG, hCG, testosterone+SNP and SNP treated groups. Nitrite concentration in culture media was decreased, but apoptotic DNA fragmentation was induced in testosterone treated group. These data suggest that NO production and apoptosis may be involved of granulosa cell apoptosis induced by testosterone.

  • PDF

Induction of Fas-Mediated Apoptosis by Interferon-g is Dependent on Granulosa Cell Differentiation and Follicular Maturation in the Rat Ovary

  • Lee, Hye-Jeong;Kim, Ji Young;Park, Ji Eun;Yoon, Yong-Dal;Tsang, Benjamin K.;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.20 no.4
    • /
    • pp.315-329
    • /
    • 2016
  • Fas ligand (FasL) and its receptor Fas have been implicated in granulosa cell apoptosis during follicular atresia. Although interferon-gamma (IFN-${\gamma}$) is believed to be involved in the regulation Fas expression in differentiated granulosa or granulosa-luteal cells, the expression of this cytokine and its role in the regulation of the granulosa cell Fas/FasL system and apoptosis during follicular maturation have not been thoroughly investigated. In the present study, we have examined the presence of IFN-${\gamma}$ in ovarian follicles at different stage of development by immunohistochemistry and related their relative intensities with follicular expression of Fas and FasL, and with differences in granulosa cell sensitivity to Fas activation by exogenous agonistic Anti-Fas monoclonal antibody (Fas mAb). Although IFN-${\gamma}$ immunostaining was detectable in oocyte and granulosa cells in antral follicles, most intense immunoreactivity for the cytokine was observed in these cells of preantral follicles. Intense immunoreactivity for IFN-${\gamma}$ was most evident in granulosa cells of atretic early antral follicles where increased Fas and FasL expression and apoptosis were also observed. Whereas low concentrations of IFN-${\gamma}$ (10-100 U/mL) significantly increased Fas expression in undifferentiated granulosa cells (from preantral or very early antral follicles) in vitro, very higher concentrations (${\geq}1,000U/mL$) were required to up-regulate of Fas in differentiated cells isolated from eCG-primed (antral) follicles. Addition of agonistic Fas mAb to cultures of granulosa cells at the two stages of differentiation and pretreated with IFN-${\gamma}$ (100 U/mL) elicited morphological and biochemical apoptotic features which were more prominent in cells not previously exposed to the gonadotropin in vivo. These findings suggested that IFN-${\gamma}$ is an important physiologic intra-ovarian regulator of follicular atresia and plays a pivotal role in regulation of expression of Fas receptor and subsequent apoptotic response in undifferentiated (or poorly differentiated) granulosa cells at an early (penultimate) stage of follicular development.

Effects of antioxidants on viability, plasma membrane integrity and apoptosis in porcine ovarian granulosa cells damaged by bromopropane (항산화제가 Bromopropane에 의해 손상된 돼지 과립막세포의 생존율, 원형질막 온전성 및 apoptosis에 미치는 영향)

  • Lee, Seunghyung;Park, Hee-Woo;Lee, Sang-Hee;Cheong, Hee-Tae;Park, Choon-Keun;Yang, Boo-Keun
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2016
  • The purpose of this study was to examine the effects of taurine and vitamin E on ovarian granulosa cells damaged by bromopropane (BP) in pigs. We evaluated cell viability, plasma membrane integrity (PMI) and apoptotic morphological change in porcine ovarian granulosa cells. The cells were treated with 1-BP (0, 5.0, 10, and $50{\mu}M$), 2-BP (0, 5.0, 10, and 50 mM), taurine (0, 5.0, 10, and 25 mM), and vitamin E (0, 100, 200, and $400{\mu}M$) for 24 h. $10{\mu}M$ 1-BP and $50{\mu}M$ 2-BP inhibited viability and PMI, and induced apoptosis in porcine ovarian granulosa cells (p < 0.05). Cell viability and PMI were increased by taurine (10 and 25 mM) and vitamin E (100 and $200{\mu}M$), and apoptosis decreased (p < 0.05). Finally, the porcine ovarian granulosa cells were co-treated with BPs ($10{\mu}M$), taurine (10 mM) and/or vitamin E ($200{\mu}M$). Cell viability and PMI in the co-treated cells were increased, and apoptosis was decreased. In conclusion, taurine and vitamin E can improve cell viability and inhibition of apoptosis in porcine ovarian granulosa cells damaged by bromopropane.

Follicular Layer of Oocytes of Micropercops swinhonis (Pisces: Perciformes) (좀구굴치 Micropercops swinhonis의 난여포층)

  • Park, Jong-Young;Kim, Ik-Soo;Lee, Yong-Joo
    • Korean Journal of Ichthyology
    • /
    • v.13 no.4
    • /
    • pp.254-260
    • /
    • 2001
  • In the goby Micropercops swinhonis, the follicular layer of full-grown oocytes consists of an outer layer (theca cell) and an inner layer (granulosa cell). As the oocyte grows, columnar cells of inner granulosa layer secrete mucin to their cytoplasm and then surround the oocyte. Such granulosa cells appear to be cuboidal cells in the early vitellogenesis, yolk vesicle stage, to be replaced by columnar cell secreting mucins (adhesive materials) in the middle vitellogenesis, yolk granule stage. The enveloping layer of the oocyte has a muco- follicle layer filled with mucins. The mucins are an amorphous and electron-dense substance. Interestingly, the oocyte enveloping layer becomes thickened towards the animal pole as vitelogenesis proceeds. A zona radiata of about $7.8{\sim}11.5\;{\mu}m$ thick is present below the muco-follicle layer. The zona radiata is composed of an one-layered electron-dense externa and a three to five-layered electron-less interna.

  • PDF

A case of canine bilateral ovary granulosa cell tumor and mammary complex carcinoma

  • Chung, Yung-Ho;Hong, Sunhwa;Han, Sang-Jun;Kim, Okjin
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • An 11-year-old poodle bitch was presented for investigation of multicentric mammary masses. Abdominal sonography and radiography demonstrated abnormal enlargement of uterus and ovaries. Blood analysis revealed high progesterone concentration. The ovariohysterectomy and mastectomy were performed. Histopathologically, the mammary masses revealed complex carcinoma-tubulopapillary carcinoma with papillary pattern and tubule pattern. In the uterus, cystic endometrial hyperplasia was observed. Scattered inflammatory cells were observed in the endometrial stroma and mucinous material was protruded from endometrial surface. Also, in the ovaries, bilateral ovary granulosa cell tumor was detected. The bitch made a complete recovery following the ovariohysterectomy and mastectomy. This case was a very rare multiple tumor occurrence with bilateral ovary granulosa cell tumor and mammary complex carcinoma. High progesterone concentration was characterized clinically in the bitch.

Effect of CP-2 Extracted from Coptis and Croton tiglium L. on the Growth and Steroidgenesis of Follicular Granulosa Cells (콥티스속 근경과 탈지된 클로톤 종자의 혼합 추출물(CP-2)이 난포 Granulosa Cell에 미치는 영향)

  • 김종배;김종배;문정조;한영복;김종배
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 1993
  • We investigated the effects of CP-2 extracted from the mixture of Copis and Croton tiglium L, which showed very high cytotoxic effect to the various tumor cells, on the growth and steroidenesis of primary and transformed cell lines PA-GS6 and PO-GRS1 by cotransfectionwith SV40 and Ha ras oncogenes. CP-2 inhibited the growth of PA-GS6 and PO-GRS1 in a dose dependent manner when the growth of them was measured by cell number and by protein content, while CP-2 did not affect the growth of primary granulose cells. Productions of progesterone ofprimary and transformed granulosa cells were stimulated by forskolin, but this stimulatory effect was blocked by treatment of CP-2. Clinical application of CP-2 asa new anti-cancer drug and utilization of transformed granulosa cells as a model system for the screening of anti-cancer drug were also discussed.

  • PDF