• Title, Summary, Keyword: Genetic transformation

Search Result 396, Processing Time 0.043 seconds

Development of genetic transformation method of Korean soybean (국내콩 형질전환 기술개발)

  • Jeon, Eun-Hee;Chung, Young-Soo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • Current status of soybean transformation method in Korera was reviewed with recent publications. Most frequently used method for genetic transformation was Agrobacterium-mediated transformation on cotyledonary node which is most popular method used in foreign country. In addition to this, various methods such as sonicationmediated transformation, in planta transformation, and transformation on meristem tissue of germinating seed, have been tried in Korea, even though their efficiencies on repeatability and stability were relatively low. Based on the promising results developed recently by reviewer, several important considerations for successful soybean transformations were suggested. They are 1) proper genotype screening, 2) targeting transformation on exact point, 3) multiple shoot formation, 4) efficient selection pressure, 5) successful shoot elongation, 6) efficient root formation. These are the basic requirements for stable and highly efficient soybean transformation of Korean soybean.

Agrobacterium tumefaciens-Mediated Genetic Transformation: Mechanism and Factors

  • Kumar, Nitish;Vijayanand, K.G.;Reddy, Myppala P.;Singh, Amritpal S.;Naraynan, Subhash
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.195-204
    • /
    • 2009
  • Agrobacterium-mediated genetic transformation has been widely used for the production of genetically modified transgenic plants to obtain specific desired traits. Most of the molecular mechanisms that underlie the transformation steps have been well elucidated over the years. However, a few steps, such as nuclear targeting, T-DNA integration, and Agrobacterium-plant proteins involved remain largely obscure and are still under extensive studies. This review describes the major steps involved in the molecular mechanism of Agrobacterium-mediated transformation and provides insight in the recent developments in studies on the Agrobacterium-mediated genetic transformation system. Some factors affecting the transformation efficiency are also briefly discussed.

  • PDF

Nonlinear Feature Transformation and Genetic Feature Selection: Improving System Security and Decreasing Computational Cost

  • Taghanaki, Saeid Asgari;Ansari, Mohammad Reza;Dehkordi, Behzad Zamani;Mousavi, Sayed Ali
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.847-857
    • /
    • 2012
  • Intrusion detection systems (IDSs) have an important effect on system defense and security. Recently, most IDS methods have used transformed features, selected features, or original features. Both feature transformation and feature selection have their advantages. Neighborhood component analysis feature transformation and genetic feature selection (NCAGAFS) is proposed in this research. NCAGAFS is based on soft computing and data mining and uses the advantages of both transformation and selection. This method transforms features via neighborhood component analysis and chooses the best features with a classifier based on a genetic feature selection method. This novel approach is verified using the KDD Cup99 dataset, demonstrating higher performances than other well-known methods under various classifiers have demonstrated.

Agrobacterium-mediated Transformation of the Winter Mushroom, Flammulina velutipes

  • Cho, Jung-Hee;Lee, Seung-Eun;Chang, Who-Bong;Cha, Jae-Soon
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.104-107
    • /
    • 2006
  • Flammulina velutipes was transformed efficiently by Agrobacterium-mediated transformation system. The transformation frequency was about 16% with the gill tissues of the fungal fruiting body. Southern hybridization and genetic analysis suggest that the introduced DNA was inserted onto different locations of the fungal genome, and inherited stably to the next generation via basidiospores. Transformation or gene tagging with Agrobacterium T-DNA based vector should be useful for wide ranges of genetic or molecular biological studies of the mushroom.

Agrobacterium tumefaciens Mediated Genetic Transformation of Pigeonpea [Cajanus cajan (L.) Millsp.]

  • Kumar, S.Manoj;Syamala, D.;Sharma, Kiran K.;Devi, Prathibha
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • Optimal protocol for efficient genetic transformation has been defined to aid future strategies of genetic engineering in pigeon pea with agronomically important genes. Transgenic pigeonpea plants were successfully produced through Agrobacterium tumefaciens-mediated genetic transformation method using cotyledonary node explants by employing defined culture media. The explants were co-cultivated with A. tumefaciens strain C-58 harboring the binary plasmid, pCAMBIA-1301 [con-ferring $\beta$-glucuronidase(GUS) activity and resistance to hygromycin] and cultured on selection medium (regeneration medium supplemented with hygromycin) to select putatively transformed shoots. The shoots were then rooted on root induction medium and transferred to pots containing sand and soil mixture in the ratio of 1:1. About 22 putative TO transgenic plants have been produced. Stable expression and integration of the transgenes in the putative transgenics were confirmed by GUS assay, PCR and Southern blot hybridization with a transformation efficiency of over 45%. Stable integration and expression of the marker gene has been confirmed in the TO and T1 transgenics through PCR, and Southern hybridization.

Malignant transformation of oral lichen planus and related genetic factors

  • Hwang, Eurim C.;Choi, Se-Young;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Oral lichen planus (OLP) is a chronic inflammatory disease observed in approximately 0.5-2.2% of the population, and it is recognized as a premalignant lesion that can progress into oral squamous cell carcinoma (OSCC). The rate of malignant transformation is approximately 1.09-2.3%, and the risk factors for malignant transformation are age, female, erosive type, and tongue site location. Malignant transformation of OLP is likely related to the low frequency of apoptotic phenomena. Therefore, apoptosis-related genetic factors, like p53, BCL-2, and BAX are reviewed. Increased p53 expression and altered expression of BCL-2 and BAX were observed in OLP patients, and the malignant transformation rate in these patients was relatively higher. The involvement of microRNA (miRNA) in the malignant transformation of OLP is also reviewed. Because autophagy is involved in cell survival and death through the regulation of various cellular processes, autophagy-related genetic factors may function as factors for malignant transformation. In OLP, decreased levels of ATG9B mRNA and a higher expression of IGF1 were observed, suggesting a reduction in cell death and autophagic response. Activated IGF1-PI3K/AKT/mTor cascade may play an important role in a signaling pathway related to the malignant transformation of OLP to OSCC. Recent research has shown that miRNAs, such as miR-199 and miR-122, activate the cascade, increasing the prosurvival and proproliferative signals.

Genetic Transformation of Streptomyces caespitosus

  • Yoo, Jin-Cheol;Sim, Jung-Bo;Kim, Sung-Jin;Kim, Si-Wouk;Lee, Jung-Jun
    • Archives of Pharmacal Research
    • /
    • v.16 no.4
    • /
    • pp.300-304
    • /
    • 1993
  • Genetic transformation of streptomyces gaespitosus by plasmid plJ 702 was camied out. Optimal conditions for the protoplast preparation of streptomyces casepitosus, its regeneration, and its transformation by plJ 702 were evaluated. Addition of 2% glycine to the culture broth was optimal for protoplast yield. Formation and regeneration of protoplasts were most efficient when the mycelium were harvested at between late log and stationary growth phase. The regeneration frequency of the protoplasts was 15% when the protoplats were regenerated on R2YE agar media containing 0.5M sucrose. Under the best condition for protoplats (M.W. 4,000) treatment for 2 minutes.

  • PDF

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

Mannose-Based Selection with Phosphomannose-Isomerase (PMI) Gene as a Positive Selectable Marker for Rice Genetic Transformation

  • Penna, Suprasanna;Ramaswamy, Manjunatha Benakanare;Anant., Bapat Vishvas.
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.233-236
    • /
    • 2008
  • A positive selectable marker system was adapted for transformation of mature embryo-derived calli of Indica rice (Oryza sativa L.) utilizing the PMI gene encoding for phosphomannose-isomerase that converts mannose-6-phosphate to fructose-6-phosphate. The transformed cells grew on medium supplemented with 3% mannose as carbon source and calli were selected on media containing various concentrations of mannose. Molecular analyses showed that the transformed plants contained the PMI gene. The results indicate that the mannose selection system can be used for Agrobacterium-mediated transformation of mature embryo in rice to substitute the use of conventional selectable markers in genetic transformation.

  • PDF

Recent advance in genetic transformation of tall fescue (형질전환 톨 페스큐 개발의 최근 동향)

  • Lee, Ki-Won;Lee, Sang-Hoon;Kim, Kyung-Hee;Lee, Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.336-343
    • /
    • 2009
  • Tall fescue is an open-pollinated, perennial, cool season grass species widely used for forage and turf. Tremendous progress has been made in genetic transformation of tall fescue in the past decade. Methods for generating transgenic tall fescue plants have been developed based on biolistic transformation and Agrobacterium-mediated transformation. Potentially useful agronomic genes have been tested to environmental stress tolerance, herbicide tolerance and improve forage quality in tall fescue plants. We review progress in biotechnological improvement of tall fescue and discuss future molecular breeding of this species.