• Title, Summary, Keyword: GSTA1

Search Result 10, Processing Time 0.036 seconds

PKC Downstream of PI3-Kinase Regulates Peroxynitrite Formation for Nrf2-Mediated GSTA2 Induction

  • Kim, Sang-Geon;Kim, Sun-Ok
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.757-762
    • /
    • 2004
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by the induction of phase II detoxifying genes including glutathione S-transferases (GSTs). NF-E2-related factor-2 (Nrf2) phosphorylation by protein kinase C (PKC) is a critical event for its nuclear translocation in response to oxidative stress. Previously, we have shown that peroxynitrite plays a role in activation of Nrf2 and Nrf2 binding to the antioxidant response element (ARE) via the pathway of phosphatidylinositol 3-kinase (PI3-kinase) and that nitric oxide synthase in hepatocytes is required for GSTA2 induction. In view of the importance of PKC and Pl3-kinase in Nrf2-mediated GST induction, we investigated the role of these kinases in peroxynitrite formation for GSTA2 induction by oxidative stress and determined the relationship between PKC and PI3-kinase. Although PKC activation by phorbol 12-myristate-13-acetate (PMA) did not increase the extents of constitutive and inducible GSTA2 expression, either PKC depletion by PMA or PKC inhibition by staurosporine significantly inhibited GSTA2 induction by tert-butylhydroquinone (t-SHa) a prooxidant chemical. Therefore, the basal PKC activity is req- uisite for GSTA2 induction. 3-Morpholinosydnonimine (SIN-1), which decomposes and yields peroxynitrite, induced GSTA2, which was not inhibited by PKC depletion, but slightly enhanced by PKC activation, suggesting that PKC promotes peroxynitrite formation for Nrf2-mediated GSTA2 induction. Treatment of cells with S-nitroso-N-acetyl-penicillamine (SNAP), an exogenous NO donor, in combination with t-BHQ may produce peroxynitrite. GSTA2 induction by SNAP + t-BHQ was not decreased by PKC depletion, but rather enhanced by PKC activation, showing that the activity of PKC might be required for peroxynitrite formation. LY294002 a P13-kinase inhibitor blocked GSTA2 induction by t-BHQ, which was reversed by PMA-induced PKC activation. These results provide evidence that PKC may playa role in formation of peroxynitrite that activates Nrf2 for GSTA2 induction and that PKC may serve an activator for GSTA2 induction downstream of PI3-kinase.

Expression and Function of GSTA1 in Lung Cancer Cells

  • Pan, Xue-Diao;Yang, Zhou-Ping;Tang, Qi-Ling;Peng, Tong;Zhang, Zheng-Bing;Zhou, Si-Gui;Wang, Gui-Xiang;He, Bing;Zang, Lin-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8631-8635
    • /
    • 2014
  • Glutathione S-transferase A1 (GSTA1) appears to be primarily involved in detoxification processes, but possible roles in lung cancer remain unclear. The objective of this study was to investigate the expression and function of GSTA1 in lung cancer cells. Real-time PCR and Western blotting were performed to assess expression in cancer cell lines and the normal lung cells, then verify the A549 cells line with stable overexpression. Localization of GSTA1 proteins was assessed by cytoimmunofluorescence. Three double-strand DNA oligoRNAs (SiRNAs) were synthesized prior to being transfected into A549 cells with Lipofectamine 2000, and then the most efficient SiRNA was selected. Expression of the GSTA1 gene in the transfected cells was determined by real-time PCR and Western blotting. The viability of the transfected cells were assessed by MTT. Results showed that the mRNA and protein expression of A549 cancer cells was higher than in MRC-5 normal cells. Cytoimmunofluorescence demonstrated GSTA1 localization in the cell cytoplasm and/or membranes. Transfection into A549 cells demonstrated that down-regulated expression could inhibit cell viability. Our data indicated that GSTA1 expression may be a target molecule in early diagnosis and treatment of lung cancer.

Induction of Microsomal Epoxide Hydrolase, rGSTA2, rGSTA3/5, and rGSTM1 by Disulfiram, but not by Diethyldithiocarbamate, a Reduced Form of Disulfiram

  • Kim, Sang-Geon;Kim, Hye-Jung
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 1997
  • Disulfiram (DSF) and diethyldithiocarbamate (DDC), a reduced form of DSF, protect the liver against toxicant-induced injury through inhibition of cytochrome P450 2E1. The effect of DSF and DDC on the levels of major hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression was comparatively studied, given the view that these enzymes are involved in terminal detoxification events for high energy intermediates of xenobiotics. Treatment of rats with a single dose of DSF (20-200 mg/kg, po) resulted in 2- to 15-fold increases in the mEH mRNA level at 24 hr with the ED$_{50}$ value being noted as 60 mg/kg. The mEH mRNA level was elevated ~15-fold at 24 hr after treatment at the dose of 100 mg/kg, whereas the hepatic mRNA level was rather decreased from the maximum at the dose of 200 mg/kg, indicating that DSF might cause cytotoxicity at the dose. In contrast to the effect of DSF, DDC only minimally elevated the mEH mRNA level at the doses employed. DSF moderately increased the major GST mRNA levels in the liver as a function of dose, resulting in rGSTA2, rGSTA3/5 or rGSTM1 mRNA levels being elevated 3- to 4-fold at 24 hr post-treatment, whereas the rGSTM2 mRNA level was not altered. DDC, however, failed to stimulate the mRNA levels for major GST subunits, indicating that the reduced form of DSF was ineffective in stimulating the GST the expression. The effect of other organosulfides including aldrithiol, 2, 2'-dithiobis(benzothiazole) (DTB), tetramethylthiouram disulfide (TMTD) and allyl disulfide (ADS) on the hepatic mEH and GST mRNA expression was assessed in rats in order to further confirm the increase in the gene expression by other disulfides. Treatment of rats with aldrithiol (100 mg/kg, po) resulted in a 16-fold increase in the mEH mRNA level at 24 hr post-treatment. DTB, TMTD and ADS also caused 5-, 9- and 12-fold increases in the rnRNA level, respectively, as compared to control. Thus, all of the disulfides examined were active in stimulating the mEH gene in the liver. The organosulfides significantly increased the rGSTA2, rGSTA3, rGSTA5 and rGSTM1 mRNA levels at 24 hr after administration. In particular, aldrithiol was very efficient in stimulating the rGSTA and rGSTM genes among the disulfides examined. These results provide evidence that DSF and other sulfides effectively stimulate the mEH and major GST gene expression at early times in the liver and that DDC, a reduced form of DSF, was ineffective in stimulating the expression of the genes, supporting the conclusion that reduced form(s) of organosulfur compound(s) might be less effective in inducing the mEH and GST genes through the antioxidant responsive element(s).

  • PDF

Activation of C/EBP$\beta$ by PD98059 leads to the induction of GSTA2

  • Park, E-Y;Kang, K-W;Kim, S-G
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • /
    • pp.72-72
    • /
    • 2003
  • Induction of glutathione S-transferases is associated with cancer chemoprevention. We reported that PD98059, an MKK1 inhibitor, induces glutathione Stransferase A2 (rGSTA2). This report comparatively examines the role of CCAAT/enhancer binding protein (C/EBP) and Nrf-2 in the induction of rGSTA2 by PD98059. PD98059 at the concentrations effective for the inhibition of MKKI increased the rGSTA2 protein and mRNA levels in H4IIE cells. (omitted)

  • PDF

Role of PI3-kinase and MAP Kinases in the ARE-mediated Glutathione S-Transferase Induction by Phytochemicals: Comparison with the Oxidative Stress Caused by Decreased Glutathione

  • Kim, Sang-Geon;Kang, Keon-Wook
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.251-256
    • /
    • 2001
  • The expression of phase II detoxifying enzymes is affected by a variety of compounds and the induction of the enzymes plays an essential role in chemoprevention. A variety of phytochemicals such as sulfur-containing chemoprotective agents (SCC) may trigger cellular signals and activate phase II gene expression through ARE activation. see induces glutathione S-transferases. Studies were conducted to investigate the role of mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase) in the induction of GST (e.g. rGSTA2) by sec. We also studied the MAP kinase pathway responsible for the GST expression by see and compared that with the pathway activated by oxidative stress as a result of sulfur amino acids deprivation (SAAD). see inhibited phosphorylation of ERK1/2 although the effect of see on JNK and p38 MAP kinase was minimal. Wortmannin and LY294002. PI3-kinase inhibitors. abolished the increases in rGSTA2 mRNA and protein levels by SCC. Deprivation of cystine and methionine caused oxidative stress in H4IIE cells. as evidenced by a decrease in the reduced glutathione and an increase in prooxidant production. Electrophoretic mobility shift assay revealed that the ARE complex consisting of Nrf-1/2 and Maf proteins was activated 12~48 h. The rGSTA2 mRNA and protein levels were increased by SAAD. Activation of ARE and induction of rGSTA2 were both completely inhibited by PI3-kinase inhibitors. Inhibition of p38 MAP kinase by SB203580 prevented the ARE-mediated rGSTA2 induction. The results of this study showed that PI3-kinase might play an essential role in the ARE-mediated rGSTA2 induction by see or SAAD and that the dual MAP kinase pathways were responsible for the enzyme induction.

  • PDF

Differential Expression of Xenobiotic-Matabolizing Enzymes by Benzylisothiazole in Association with Hepatotoxicity: Effects on Rat Hepatic Epoxide Hydrolase, Glutathione S-Transferases and Cytochrome P450s

  • Cho, Min- Kyung;Kim, Sang-Geon
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 1998
  • Previous studies have shown that the heterocycles including thiazoles are efficacious in inducing phase phase II metabolizing enzyme as well as certain cytochrome P450s and that the inductin of these matabolizing enzymes by the heterocyclic agents is highly associated with their hepatotoxicity. In the present study, the effects of benzylisothiazole (BIT), which has a isothiazole moiety, on the expression of microsomal epoxide hydrolase (mEH), major glutathione S-transerases and cytochrome P450s were studied in the rat liver in association with its hepatotoxicity. Treatment of rats with BIT(1.17 mmol/kg, 1~3d) resulted in substantial increases in the mEH. rGSTA2, rGSTA2, rGSTM1 and rGSTM2 mRNA levels, whereas rGSTA3 and rGSTA5 mRNA levels were increased to much lesser extents. A time-course study showed that the mRNA levels of mEH and rGSTs were greater at 24hr after treatment than those after 3 days of consecutive treatment. Relative changes in mEH and rGST mRNA levels were consistent with those in the proteins, as assessed by Western immunoblot analysis. Hepatic cytochrom P450 levels were monitored after BIT treatment under the assumption that metabolic activation of BIT may affect expression of the enzymes in conjunction with hepatotoxicity. Immunoblot analysis revealed that cytochrome P450 2B1/2 were 3-to 4-fold induced in rats teatd with BIT(1.17 mmol/kg/day.3days), whereas P450 1A2, 2C11 and 3A1/2 levels were decreased to 20~30% of those in unteatd rats. P450 2E1 was only slightly decreased by BIT. Thus, the levels of several cytochrome P450s were suppressed by BIT treatment. Rats treated with BIT at the dose of 1.17mmol/kg for 3 days exhibited extensive multifocal nodular necrosis with moderate to extensive diffuse liver cell degeneration. No notable toxicity was observed in the kidney. These results showed that BIT induces mEH and rGSTs in the liver with increases in the mRNA levels, whereas the agent significantly decreased major cytochrome P450s. The changes in the detoxifying enzymes might be associated with the necrotic liver after consecutive treatment.

  • PDF

C/EBP$\beta$ and Nrf2-Mediated GSTA2 Induction by $\alpha$-Lipoic acid, an Insulin-Sensitizing Agent that has Antioxidant and Prooxidant Activities

  • Ki, Sung-Hwan;Cho, Il-Je;Kim, Sang-Geon
    • Proceedings of the PSK Conference
    • /
    • /
    • pp.82.1-82
    • /
    • 2003
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by enhanced expression of phase II detoxifying genes including glutathione S-transferases. ${\alpha}$-Lipoic acid, which exerts prooxidant or antioxidant activities, has been shown to activate the insulin signaling pathway and thus to induce insulin-like actions via PI3-kinase and Akt. Our previous studies have shown that PI3-kinase plays an essential role in Nrf2-or C/EBP${\beta}$-mediated glutathione S-transferase A2 (GSTA2) induction. (omitted)

  • PDF

Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.206-213
    • /
    • 2017
  • BACKGROUN/OBJECTIVES: Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. METHODS/MATERIALS: After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin $F2{\alpha}$ (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. RESULTS: Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly (P < 0.05) lower than those in the HF group without dose-dependent effect. Plasma TBARS concentration and TAC in the HF+BGE 1.5 group were significantly decreased compared to those of the HF group. The activities of catalase and glutathione peroxidase were significantly (P < 0.05) increased in the HF+BGE 1.0 and HF+BGE 1.5 groups compared to those of the HF group. The mRNA expression levels of hepatic Nrf2, NQO1, HO-1, and GSTA2 were significantly (P < 0.05) increased in the HF with BGE groups compared to those in the HF group. CONCLUSIONS: The improvements of blood glucose homeostasis and antioxidant systems in rats fed with black garlic extract were related to mRNA expression levels of Nrf2 related genes.

Molecular Characterization and Expression Analysis of a Glutathione S-Transferase cDNA from Abalone (Haliotis discus hannai) (북방전복 (Haliotis discus hannai)에서 분리한 Glutathione S-transferase 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Dong-Gyun;Kim, Young-Ok;Kim, Woo-Jin;An, Cheul Min;Nam, Bo-Hye
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • Glutathione S-transferases (GSTs) are a superfamily of detoxification enzymes that primarily catalyze the nucleophilic addition of reduced glutathione to both endogenous and exogenous electrophiles. In this study, we isolated and characterized a full-length of alpha class GST cDNA from the abalone (Haliotis discus hannai). The abalone GST cDNA encodes a 223-amino acid polypeptide with a calculated molecular mass of 25.8 kDa and isoelectric point of 5.69. Multiple alignments and phylogenetic analysis with the deduced abalone GST protein revealed that it belongs to the alpha class GSTs and showed strong homology with disk abalone (Haliotis discus discus) putative alpha class GST. Abalone GST mRNA was ubiquitously detected in all tested tissues. GST mRNA expression was comparatively high in the mantle, gill, liver, and digestive duct, however, lowest in the hemocytes. Expression level of abalone GST mRNA in the mantle, gill, liver, and digestive duct was 182.7-fold, 114.8-fold, 4675.8-fold, 406.1-fold higher than in the hemocytes, respectively. Expression level of abalone GST mRNA in the liver was peaked at 6 h post-infection with Vibrio parahemolyticus and decreased at 12 h post-infection. While the expression level of abalone GST mRNA in the hemocytes was drastically increased at 3 h post-infection with Vibrio parahemolyticus. These results suggest that abalone GST is conserved through evolution and may play roles similar to its mammalian counterparts.