• Title, Summary, Keyword: GH (Growth hormone)

Search Result 245, Processing Time 0.039 seconds

Efficacy Tests of Recombinant Human Growth Hormone Produced from Saccharomyces cerevisiae

  • Park, Soon-Jae;Kim, Nam-Joong;Kwon, Soon-Chang;Lee, Seung-Joo;Cho, Joong-Myung
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.437-442
    • /
    • 1995
  • The potency of yeast-derived methionyl-free human growth hormone (rhGH), which was obtained by removal of the N-terminal Met from methionyl-hGH, was estimated by in vitro and in vivo assays. In radio-receptor assay where the binding affinity of growth hormone to the receptor was estimated, the recombinant hGH showed 2.9 international units (IU) per mg of specific activity. In contrast, pitUitary-derived human growth hormone had a slightly lower receptor binding activity (2.5 IU/mg) compared with recombinant growth hormone. For the in vivo assay, efficacy of rhGH was tested by use of hypophysectomized rats, in which pituitary organs were surgically removed, resulting in the termination of growth hormone secretion. The weight-increase in rats by the injection of rhGH was almost identical to the result obtained by the injection of the same amount of pituitary-derived (international standard) hGH. A comparision of the secondary structures of rhGH and rMet-hGH by circular dichroism spectrophotometer demonstrated that the removal of the methionyl residue from rMet-hGH did not exert any effect on the structure of the growth hormone. In conclusion, methionyl-free human growth hormone produced from yeast was highly potent in biological activity and maintained a legitimate three dimensional structure.

  • PDF

Current use of growth hormone in children (성장호르몬 치료의 최신 지견)

  • Shin, Choong Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.7
    • /
    • pp.703-709
    • /
    • 2006
  • Since the advent of growth hormone(GH), children with a wide variety of growth disorders have received GH treatment. In GH deficiency(GHD), Turner syndrome, chronic renal failure, children born small for gestational age, Prader-Willi syndrome, and idiopathic short stature, the therapeutic effects and safety profile of GH are reviewed. GH therapy has been clearly shown to improve height velocity and final adult height in a variety of pediatric conditions in which growth is compromised irrespective of GHD. Early initiation and individualization of GH treatment has the potential to normalize childhood growth. The supra-physiological doses of GH have been shown to increase height velocity during childhood and final height in non-GHD conditions. Adverse events during GH therapy are uncommon and often not drug related. However continued surveillance into adult life is crucial, especially in children receiving supra-physiological doses or whose underlying condition increases their risk of adverse effects.

Porcine growth hormone induces the nuclear localization of porcine growth hormone receptor in vivo

  • Lan, Hainan;Liu, Huilin;Hong, Pan;Li, Ruonan;Zheng, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.499-504
    • /
    • 2018
  • Objective: Recent studies have challenged the traditional paradigm that growth hormone receptor (GHR) displays physiological functions only in the cell membrane. It has been demonstrated that GHR localizes to the cell nucleus and still exhibits important physiological roles. The phenomenon of nuclear localization of growth hormone (GH)-induced GHR has previously been described in vitro. However, until recently, whether GH could induce nuclear localization of GHR in vivo was unclear. Methods: In the present study, we used pig as an animal model, and porcine growth hormone (pGH) or saline was injected into the inferior vena cava. We subsequently observed the localization of porcine growth hormone receptor (pGHR) using multiple techniques, including, immunoprecipitation and Western-blotting, indirect immunofluorescence assay and electronmicroscopy. Results: The results showed that pGH could induce nuclear localization of pGHR. Taken together, the results of the present study provided the first demonstration that pGHR was translocated to cell nuclei under pGH stimulation in vivo. Conclusion: Nuclear localization of pGHR induced by the in vivo pGH treatment suggests new functions and/or novel roles of nuclear pGHR, which deserve further study.

Growth Hormone Therapy in Adults with Prader-Willi Syndrome

  • Cho, Sung Yoon
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.1 no.2
    • /
    • pp.49-53
    • /
    • 2015
  • Prader-Willi syndrome (PWS) is a complex multisystem genetic disorder characterized by hypothalamic-pituitary dysfunction. Many features of PWS indicate a deficiency in growth hormone (GH) production, and these findings provide a rationale for GH therapy in PWS. It is possible that rhGH therapy could have beneficial effects in adults with PWS, similar to those in adults with GH deficiency (GHD) of non-syndromic cause. However, there is a paucity of data on the use of GH in adults with PWS. Here, the previous studies about efficacy and safety of rhGH therapy in PWS adults are summarized. Briefly, rhGH therapy in PWS adults may improve body composition, leading to increased lean body mass and decreased fat mass, as well as decreased subcutaneous and visceral adiposity without overall changes in body mass index. There may be at least transient deterioration in glucose homoeostasis in some PWS patients on rhGH therapy, which requires further study. In addition, clinical care guidelines for rhGH therapy in adults with PWS were suggested.

Induction of Growth Hormone Release by Glycyrrhizae Radix on Rat

  • Lee, Ho-Young;Jung, Dae-Young;Ha, Hye-Kyung;Kang, Sam-Sik;Kim, Ju-Sun;Kim, Chung-Sook
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.979-985
    • /
    • 2007
  • Induction of growth hormone (GH) by Glycyrrhizae Radix (GR), one of the most popular herbal medicine, and its major ingredients were studied in rat pituitary cells in vitro and in vivo assay. The MeOH extract and the n-hexane (HX) fraction of GR induced rat GH (rGH) release up to 1.89 times ($0.34{\pm}0.04 nM$) and 4.59 times ($0.83{\pm}0.03 nM$), compared to the basal level (p < 0.05). Among many ingredients isolated and purified from GR both glycyrrhetinic acid and glycyrrhizin induced significantly rGH release compared to the control (p < 0.05). After an intravenous injection of rat growth hormone releasing hormone (rGHRH) ($10{\mu}g$/kg) as positive control, in SD rats, $T_{max}$ of plasma rGH level was 10 min, $C_{max}$ was $3.84{\pm}0.01 nM$ (n = 3), and enhanced plasma rGH level returned to the baseline in 90 min. Both $AUC_{0-90}$ (area under the curve) of plasma rGH level after HX fraction and that after rGHRH administration were increased significantly from the basal level, respectively (p < 0.01). In conclusions, HX fraction is the most active fraction of MeOH extract of GR in rGH induction.

Technology Trends of Growth Hormone and Development Strategies for Growtropin

  • Seo, Kwang-Seok
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.1 no.1
    • /
    • pp.23-27
    • /
    • 2015
  • Recent research trends of human growth hormone (hGH) are divided into improved first-generation products, long-acting second-generation products, and biosimilar products. Among the improved first-generation products studies, studies of injection devices are being actively conducted. The long-acting second-generation products are focused on extending the half-life of hGH, and depending on the results of the clinical trials, the candidates are expected to lead the future hGH market. Finally, biosimilar has had less impact on the hGH market before now; however, expectations of low-cost products still remainas an opportunity.

Growth hormone treatment and risk of malig­nancy

  • Chae, Hyun-Wook;Kim, Duk-Hee;Kim, Ho-Seong
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • Growth hormone (GH) treatment has been increasingly widely used for children with GH deficiencies as the survival rate of pediatric patients with malignancies has increased. Both GH and insulin-like growth factor-I have mitogenic and antiapoptotic activity, prompting concern that GH treatment may be associated with tumor development. In this review, the authors examined the relationship between GH treatment and cancer risk in terms of de novo malignancy, recurrence, and secondary neoplasm. Although the results from numerous studies were not entirely consistent, this review of various clinical and epidemiological studies demonstrated that there is no clear evidence of a causal relationship between GH treatment and tumor development. Nonetheless, a small number of studies reported that childhood cancer survivors who receive GH treatment have a small increased risk of developing de novo cancer and secondary malignant neoplasm. Therefore, regular follow-ups and careful examination for development of cancer should be required in children who receive GH treatment. Continued surveillance for an extended period is essential for monitoring long-term safety.

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.

Interaction of Bovine Growth Hormone with Buffalo Adipose Tissue and Identification of Signaling Molecules in Its Action

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1030-1038
    • /
    • 2007
  • Results on localization of growth hormone receptor (GHR), interaction of growth hormone (GH) with receptor in buffalo adipose tissue and identification of activated signaling molecules in the action of GH are presented. Bovine GH (bGH) was labeled with fluorescein or biotin. Fluorescein-labelled bGH was used for localization of GHRs in buffalo adipocytes. The receptors were present on the cell surface. The affinity of binding of GH to its receptor was determined by designing an experiment in which buffalo adipose tissue explants, biotinylated GH and streptavidin-peroxidase conjugate were employed. The affinity constant was calculated to be $2{\times}10^8M^{-1}$. The receptor density on adipose tissue was found to be 1 femto mole per mg of tissue. Signalling molecules generated in the action of GH were tentatively identified by employing Western blot and enhanced chemiluminescence techniques using anti-phosphotyrosine antibody. Based on molecular weights of proteins reactive to anti-phosphotyrosine antibody, three signaling molecules viz. insulin receptor substrate, Janus activated kinase (Jak) and mitogen activated protein were tentatively identified. These signaling molecules appeared in a time (incubation time of explants with growth hormone) dependent way. The activation of Jak2 was confirmed by employing anti-Jak2 antibody in a Western blot. The activation of Jak2 occurred during 5 min incubation of buffalo adipose tissue explants with GH and incubation for an additional period, viz. 30 min. or 60 min., resulted in a drastic reduction in activation. The results suggest that Jak2 activation is an early event in the action of GH in buffalo adipose tissue.

Efficacy and safety of growth hormone treatment for children born small for gestational age

  • Hwang, Il Tae
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.9
    • /
    • pp.379-383
    • /
    • 2014
  • Recombinant growth hormone (GH) is an effective treatment for short children who are born small for gestational age (SGA). Short children born SGA who fail to demonstrate catch-up growth by 2-4 years of age are candidates for GH treatment initiated to achieve catch-up growth to a normal height in early childhood, maintain a normal height gain throughout childhood, and achieve an adult height within the normal target range. GH treatment at a dose of $35-70{\mu}g/kg/day$ should be considered for those with very marked growth retardation, as these patients require rapid catch-up growth. Factors associated with response to GH treatment during the initial 2-3 years of therapy include age and height standard deviation scores at the start of therapy, midparental height, and GH dose. Adverse events due to GH treatment are no more common in the SGA population than in other conditions treated with GH. Early surveillance in growth clinics is strongly recommended for children born SGA who have not caught up. Although high dose of up to 0.067 mg/kg/day are relatively safe for short children with growth failure, clinicians need to remain aware of long-term mortality and morbidity after GH treatment.