• Title, Summary, Keyword: Fuel reforming

Search Result 293, Processing Time 0.043 seconds

Theoretical Analyses of Autothermal Reforming Methanol for Use in Fuel Cell

  • Wang Hak-Min;Choi Kap-Seung;Kang Il-Hwan;Kim Hyung-Man;Erickson Paul A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.864-873
    • /
    • 2006
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

Characteristics of Methanol-O2 Catalytic Burner according to Oxidant Supply Method (산화제 공급 방법에 따른 메탄올-산소 촉매연소기 특성)

  • JI, HYUNJIN;LEE, JUNGHUN;CHOI, EUNYEONG;YANG, SUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2020
  • Recently, a fuel reforming plant for supplying high purity hydrogen has been studied to increase the operation time of underwater weapon systems. Since steam reforming is an endothermic reaction, it is necessary to continuously supply heat to the reactor. A fuel reforming plant needs a methanol-O2 catalytic burner to obtain heat and supply heat to the reformer. In this study, two types of designs of a catalytic burner are presented and the results are analyzed through the experiments. The design of the catalytic burner is divided into that the O2 supply direction is perpendicular to the methanol flow direction (Design 1) and the same as the methanol flow direction (Design 2). In case of Design 1, backfire and flame combustion occurred in the mixing space in front of the catalyst, and in the absence of the mixing space, combustion reaction occurred only in a part of the catalyst. For above reasons, Design 1 could not increase the exhaust gas temperature to 750℃. In Design 2, no flashback and flame combustion were observed, the exhaust gas could be maintained up to 750℃. However, the O2 distributor was exposed to high temperatures, resulting in thermal damage.

Characteristics of LPG Fuel Reforming Utilizing Plasma Reformer (LPG 연료의 플라즈마 개질 특성연구)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyoung;Cho, Yongseok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.17-22
    • /
    • 2012
  • In this study, characteristics of reforming process of Automotive LPG fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2$/C ratio, reactant flow rate and plasma power on the process were investigated. In the test of varying $O_2$/C ratio from partial oxidation stoichiometry to combustion stoichiometry, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2$/C ratio for the highest $H_2$ yield was determined to be 0.8~0.9 for 20~50 lpm. The result can be a guide to map optimal condition of reforming process.

A Study on Idle Performance Improvements for a Gasoline Engine with the Syngas Assist (합성가스를 이용한 가솔린엔진 아이들 성능 개선에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Young-Seok
    • 한국연소학회:학술대회논문집
    • /
    • /
    • pp.245-251
    • /
    • 2005
  • Recently, fuel reforming technology for the fuel cell vehicle has been applied to internal combustion engines, with various purpose. Syngas which is reformed from fossil fuel has hydrogen as a major component. It has better effort in combustion characteristics such as wide flammability and hig speed flame propagation. In this study, syngas was added to a gasoline engine for the improvement of combustion stability and exhaust emission in idle state. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to extend lean operation limit and ignition retard range. with dramatical reduction of engine out emissions.

  • PDF

Pt-Ru, Pt-Ni bi-metallic catalysts for heavy hydrocarbon reforming (고 탄화수소 개질을 위한 Pt-Ru, Pt-Ni 이원금속촉매에 관한 연구)

  • Lee, Sanghp;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.97.2-97.2
    • /
    • 2011
  • Pt-Ru and Pt-Ni bimetallic catalysts were prepared and tested for heavy hydrocarbon reforming. Metals were supported on CGO($Ce_{0.8}Gd_{0.2}O_{2.0-x}$) by incipient wetness method. The prepared catalysts were characterized by Temperature programmed reduction(TPR). Oxidative steam reforming of n-dodecane was conducted to compare the activity of the catalysts. The reforming temperature was varied from $500^{\circ}C$ to $800^{\circ}C$ at fixed $O_2$/C of 0.3, $H_2O$/C of 3.0 and GHSV of 5,000/h.Reduction peaks of metal oxide, surface CGO and bulk CGO were detected. Reduction temperature of metal oxide decreased over the bi-metallic catalysts. It is considered that interaction between metals leads to decrease interaction between metal and oxygen. On the other hands, reduction temperatures of surface CGO were dectected in the order of Pt-Ru > Pt-Ni > Pt. low reduction temperatures of surface CGO indicates the low activation energy for oxygen ion conduction to metal. Oxygen ion conduction is known as de-coking mechanism of ionic conducting supports such as CGO. In activity test, fuel conversion was in the same order of Pt-Ru > Pt-Ni > Pt. Especially, 100% of fuel conversion was obtained over Pt-Ru catalysts at $500^{\circ}C$.

  • PDF

Performance Comparison of Integrated Reactor with Steam Reforming and Catalytic Combustion using Anode Off-Gas for High Temperature Fuel Cells (고온용 연료전지 미반응 가스를 이용한 촉매연소-개질 통합 반응기의 성능 비교)

  • Ghang, Tae-Gyu;Sung, Hae-Jung;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.800-809
    • /
    • 2011
  • The reaction characteristics of an integrated reactor with steam reformer and catalytic combustor using anode offgas for high temperature fuel cells such as MCFC and SOFC have been experimentally investigated in the present study. The coupled reactor had a coaxial cylindrical shape, and the inner and the outer tube was packed with combustion catalysts and reforming catalysts, respectively. Thus, the endothermic steam reforming could proceed by absorbing heat from catalytic combustion of anode offgas. Results show that increasing inlet temperature and decreasing excess air ratio increased the reformer temperature, which led to the increase in $H_2$ yield. The reforming performance for SOFC conditions was better than that for MCFC conditions since the composition of flammable components became smaller for MCFC cases. Measured reformate composition under various test conditions correlated well with thermal equilibrium composition.

A Simulation Study of the Effect of Microstructural Design on the Performance of Solid Oxide Fuel Cells With Direct Internal Reforming (내부개질형 고체산화물 연료전지의 마이크로 전극구조가 성능에 미치는 영향에 관한 해석적 연구)

  • Sohn, Sangho;Nam, In Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • The paper is to study on the simulation of the micro/macroscale thermo-electrochemical model of a single cell of anode-supported SOFC with direct internal reforming. The coupled heat and mass transport, electrochemical and reforming reactions, and fluid flow were simultaneously simulated based on mass, energy, charge conservation. The micro/macroscale model first calculates the detailed electrochemical and direct internal reforming processes in porous electrodes based on the comprehensive microscale model and then solve the macroscale processes such as heat and mass transport, and fluid flow in SOFCs with assumption of fully-developed flow in gas channel. The simulation results evaluate the overall performance by analyzing distributions of mole fraction, current density, temperature and microstructural design in co/counter flow configurations.

The Effect of DBD Plasma on Hydrocarbon Fuel Reforming and Change in Flammability Limits (DBD 플라즈마 개질에 의한 탄화수소계 연료 화염의 가연한계 변화)

  • Song, Mincheol;Ahn, Taekook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • /
    • pp.189-192
    • /
    • 2015
  • An experimental study was conducted to find the effect of DBD plasma on the flammability limits of inert-gas-diluted fuel. The results showed that the concentration of diluting nitrogen at flammability limit increased when nitrogen-diluted methane and propane were reformed by plasma, while it decreased when nitrogen-diluted ethylene was reformed by plasma. Gas chromatography results suggested that the fuel type dependence of flammability limits is due to the difference in the concentrations of hydrogen and hydrocarbon species in reformed fuel.

  • PDF

Study on dry reforming and partial oxidation of methane. (대기압 플라즈마를 이용한 메탄의 건식개질과 부분산화반응의 비교)

  • Hwang, Na-Kyung;Cha, Min-Suk;Lee, Dae-Hoon;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.2892-2897
    • /
    • 2008
  • Plasma techniques have been proposed to generate a hydrogen enrich gas to investigate a feasibility of plasma techniques on a fuel reforming, we considered a dry reforming and a partial oxidation with methane in the atmospheric pressure. For these experiments, we employed an arc jet plasma reactor. The effects of input power and oxidizer in each process were investigated by product analysis, including carbon monoxide, hydrogen, ethylene, propane, and acetylene as well as methane and carbon dioxide. In both processes, input electrical power activated the reactions significantly. The increased ratio of the carbon dioxide to methane in the dry reforming doesn't affect to a methane conversion, whereas increased ratio of oxidizer to methane in the partial oxidation was very effective for the reaction. Moreover, for a simultaneous treatment of methane and carbon dioxide, a feasibility of a dry reforming combined with partial oxidation also has been investigated.

  • PDF

Performance optimization of 1 kW class residential fuel processor (1 kW급 가정용 연료개질기 성능 최적화)

  • Jung, Un-Ho;Koo, Kee-Young;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.731-734
    • /
    • 2009
  • KIER has been developed a compact and highly efficient fuel processor which is one of the key component of the residential PEM fuel cells system. The fuel processor uses methane steam reforming to convert natural gas to a mixture of water, hydrogen, carbon dioxide, carbon monoxide and unreacted methane. Then carbon monoxide is converted to carbon dioxide in water-gas-shift reactor and preferential oxidation reactor. A start-up time of the fuel processor is about 1h and CO concentration among the final product is maintained less than 5 vol. ppm. To achieve high thermal efficiency of 80% on a LHV basis, an optimal thermal network was designed. Internal heat exchange of the fuel processor is so efficient that the temperature of the reformed gas and the flue gas at the exit of the fuel processor remains less than $100^{\circ}C$. A compact design considering a mixing and distribution of the feed was applied to reduce the reactor volume. The current volume of the fuel processor is 17L with insulation.

  • PDF