• 제목, 요약, 키워드: Fuel Cell System

Search Result 1,260, Processing Time 0.052 seconds

The Simulation of PEMFC System Performance for Automotive Application (1) (작동조건을 고려한 자동차용 PEM 연료전지 시스템 성능 시뮬레이션 (1))

  • Bang, Jung-Hwan;Kim, Han-Sang;Lee, Dong-Hun;Min, Kyoung-Doug;Kim, Min-Soo;Cho, Young-Man
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.460-465
    • /
    • 2003
  • The modeling of PEM (Proton Exchange Membrane) fuel cell system consisting of fuel cell stack and BOP (Balance of Plant) is presented in this paper. The effects of temperature, pressure (air, hydrogen), and humidity on the fuel cell system performance were mainly investigated using thermo-dynamical and electro-chemical equations. To understand the power distribution characteristics of fuel cell system, the effects of operating temperature and air pressure on maximum power and system power were also demonstrated. Through this study, we can get the basic insight into the fuel cell stack and BOP component sizing and it can be used effectively for the optimization of the practical fuel cell systems in purpose.

  • PDF

Study on Power Conditioning System for Fuel Cell Power Generation with 2-Stage DC-DC Converter and Inverter (2단 구성 DC-DC 컨버터와 인버터에 의한 연료전지발전 계통연계시스템 연구)

  • Ju, Young-Ah;Oh, Eun-Tae;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1551-1558
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a LLC resonant DC-DC converter and 3-phase inverter. The LLC resonant converter boosts the fuel cell voltage of 26-48V up to 400V, using the hard-switching boost converter and the high-frequency ZVS half-bridge converter. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW LLC resonant converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize a real interconnection system for the fuel-cell power generation.

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

A Fuel Cell Generation System with a Fuel Cell Simulator

  • Lee Tae-Won;Jang Su-Jin;Jang Han-Keun;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.55-61
    • /
    • 2005
  • A fuel cell (FC) system includes a fuel processor plus subsystems to manage air, water, and thermal energy, and electric power. The overall system is high-priced and needs peripheral devices. In this paper, a FC simulator is designed and constructed with the electrical characteristics of a fuel cell generation (FCG) system, using uses a simple buck converter to overcome these disadvantages. The characteristic voltage and current (V-I) curve for the FC simulator is controlled by a simplified linear function. In addition, to verify FCG system performance and operation, a full-bridge DC/DC converter and a single-phase DC/AC inverter were designed and constructed for FC applications. Close agreement between the simulation and experimental results confirms the validity and usefulness of the proposed FC simulator.

A Simulation based Study on the Economical Operating Strategies for a Residential Fuel Cell System (시뮬레이션 기반 가정용 연료전지 시스템의 경제적 운전전략에 관한 연구)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.104-115
    • /
    • 2009
  • In case of residential fuel cell system, it is significant to stably supply heat and power to a house with high efficiency and low cost for the successful commercialization. In this paper, the control strategy analysis has been performed to minimize the total cost including capital and operating cost of the residential fuel cell system. The proposed analysis methodology is based on the simulator including the efficiency models as well as the cost data for fuel cell components. The load control strategy is the key factor to decide the system efficiency and thus the cost analysis is performed when the fuel cell system is operated for several different load control logics. Additionally, annual efficiency of the system based on the seasonal load data is calculated since system efficiency is changeable according to the electric and heat demand change. As a result, the hybrid load control combined electricity oriented control and heat oriented control has the most economical operation.

The Notch Filter Design for Mitigation Current Ripple of Fuel cell-PCS (연료전지용 PCS의 출력 전류 리플 개선을 위한 노치 필터 설계)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • As a fuel cell converts the chemical energy of the fuel cell into electrical energy by electrochemical reaction, the fuel cell system is uniquely integrated technique including fuel processor, fuel cell stack, power conditioning system. The residential fuel cell-PCS(Power Conditioning System) needs to convert efficiently the DC current produced by the fuel cell into AC current using single-phase DC-AC inverter. A single-phase DC-AC inverter has naturally low frequency ripple which is twice frequency of the output current. This low frequency(120Hz) ripple reduces the efficiency of the fuel cell. This paper presents notch filter with IP voltage controller to reject specific 120Hz current ripple in single-phase inverter. The notch filter is designed that suppress just only specific frequency component and no phase delay. Finally, the proposed notch filter design method has been verified with computer simulation and experimentation.

A Study on Performance Characteristics of PEMFC with Thermal Variation (온도에 따른 고분자 전해질형 연료전지시스템의 출력 특성 연구)

  • Park, Se-Joon;Shin, Young-Sik;Jeong, Seong-Chan;Choi, Jeong-Sik;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.212-214
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEMFC(Polymer electrolyte membrane fuel cell) system applied to middle and small-scaled micro-grid power system was constructed by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with thermal variation.

  • PDF

A Study on Propulsion Control Device Characteristics of Small-scale Electric Railway Vehicle according to Driving Curve Tracking using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량의 운전곡선 추종에 따른 추진제어장치 특성 고찰)

  • Jung, No-Geon;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1804-1809
    • /
    • 2015
  • The study in railway system to apply a fuel cell system with high efficiency and mobility than other renewable energy is being actively conducted. It is needed a analysis on load characteristics and control method of rolling stock in order to apply to rolling stock. This paper presents study on control small-scale prototype power converter electric railway vehicle using fuel cell generation system. Experiment is conducted through real fuel cell generation system and reference speed applying the driving curve of the actual electric railway vehicle was applied. Also, output voltage of boost converter is controlled considering characteristic of fuel cell. And it was confirmed characteristic according to powering and regeneration of inverter.

Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell (태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계)

  • Park, Bong-Hee;Jo, Yeong-Min;Choi, Ju-Yeop;Cho, Sang-Yoon;Choy, Ick;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.