• Title/Summary/Keyword: Fire simulation

Search Result 175, Processing Time 0.135 seconds

A Study on the Analysis and Application of the Fire Simulation Tools for Ships (선박화재 시뮬레이션을 위한 도구 분석과 적용에 관한 연구)

  • Choi, Jin;Lee, Dong-Kon;Park, Beom-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.83-92
    • /
    • 2007
  • To improve the fire safety of ships, it is required to prepare the systematic design guideline for fire protection and the way of assessing fire characteristics quantitatively. The introduction of simulation technique based on fire engineering is useful to assess fire safety performance quantitatively. Fire simulation tools are currently developing with U.S.A., Europe and Japan as a leader. Most of current fire simulation tools were developed for building or inland structure. Therefore it is required validation process and development of data base to apply maritime environments. In this paper, I/O parameters of simulation tools such as CFAST and BRI2002 of zone model and FDS and KFX of field model analysed, and designed data base considering maritime environment. The fire simulation for the pool fire model of engine room and its adjacent compartments is performed and evaluated the results.

The Study on Predicting Method for Evaluating Structural Safety of a School under Fire (화재상황에서의 학교건축물 구조안전성 변화 예측 기법 연구)

  • An, Ah Young;Kim, Hee Sun;Shin, Yeoung Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.31 no.8
    • /
    • pp.3-10
    • /
    • 2015
  • The purpose of this study was to find variables effecting on fire simulation and to evaluate safety of the structural members based on temperature distributions. Toward that goal, fire simulation, transient heat transfer analysis, structural safety evaluation are carried out sequentially using Fire Dynamics Simulator (FDS), ABAQUS 6.10-3, MIDAS 785, respectively. Fire simulation is performed on a 5-story building used for a school, located in Seoul, South Korea. The results of this study were as follows; structural members are exposed spatially non-uniform temperatures which can cause significant eccentric deformation and acceleration of structural damages. Using non-uniform temperatures, reduction ratios of structural performance in structural members are deducted.

Development of Post-Processor for Fire Simulation (화재 시뮬레이션을 위한 후처리장치 개발)

  • Hur S.;Chang J.;Hur N.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.27-34
    • /
    • 2002
  • When caught in a fire inside a building or a tunnel the generated smoke is the main cause of the bad visibility, which makes it difficult for a person to find escape route. Therefore of the fire simulation it is required to visualize the simulated results of smoke realistically form a viewpoint of a person caught in a fire. In the present study, developed is a CFD post-processor which can visualize the object through smoke from the results of CFD fire simulation. Examples of some applications of the program are shown in the paper.

Fire Simulations (화재시뮬레이션)

  • Kim Sang-Moon;Yoon Sang-Youl;Kim Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • Fire simulation has been developed for decades to analyze fire cases and provide a tool to study fundamental fire dynamics and combustion. There are three way of fire simulation which are a full scale simulation, an experimental simulation and a computational simulation. In case of a full scale simulation, because a higher cost, a higher risk, more efforts are needed, a demand for it has been decreased. But recently a demand for an experimental simulation and a computational simulation has been increased. A computational simulation has several advantages; lower cost, short period, many case studies, more visual results, a quantitative result and etc. FDS(Fire Dynamics Simulator) which has been developed in BFRL(Building and Fire Research Laboratory), NIST(National Institute of Standards and Technology) is a popular world wide code for fire simulation. Lack of accurate predictions by the model could lead to erroneous conclusions with regard to fire safety. All results should be evaluated by the informed judgment of the qualified user.

  • PDF

The Influence of Forest Fire Simulation on the Properties of Polymer Insulators

  • Lee, Won-Kyo;Choi, In-Hyuk;Lee, Dong-Il;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.161-164
    • /
    • 2009
  • Forest fire simulation tests were performed with polymer and porcelain insulators at GOCHANG Power Testing Center. These tests consisted of open flames causing a temperature rise of up to $600{\sim}800^{\circ}C$ measured at the insulator surfaces. Mechanical and electrical characteristics such as the specific mechanical load, the low frequency dry flashover voltage and the impulse flashover voltage were analyzed for the polymer insulators before, during and after the simulation tests and then compared to the porcelain insulators. At the end of the fire simulation tests, there was no detrimental deterioration of any of the insulators. All the insulators passed the KEPCO specification criteria. This study showed that the forest fire simulation had no impact on the polymer insulators.

A study on the improvement plan of fire simulation training for the improvement of fire response ability : Focusing on the fire simulation training of business facility (화재대응능력 향상을 위한 화재모의훈련의 개선방안에 관한 연구 : 업무시설의 화재모의훈련 중심으로)

  • Kim, Bongjun;Ryu, Guhwan
    • Journal of Digital Convergence
    • /
    • v.18 no.9
    • /
    • pp.191-198
    • /
    • 2020
  • In this study, in order to propose an improvement plan for fire simulation training to improve fire response capability, fire simulation training is conducted for three business facilities, and changes according to whether training materials are used and whether the response time for each response stage is reflected in the training evaluation. The response posture and response ability of the training participants were observed and analyzed. As a result of the analysis, it was analyzed that most of the training participants improved their participation in training, response posture, and response ability when the use of training textbooks and response time for each response stage were reflected in the training evaluation. In the event of a fire simulation training, a number of training materials that can similarly implement the fire situation are used to improve and maintain the fire response capabilities (fire notification and fire report, initial extinguishing, and evacuation) of the training participants, and the target time for each response step. The result was that it can be used as a useful index for improving fire response capability and improving fire simulation training in the future and feedback only when quantitative training evaluation is conducted based on this setting.

A Performance-based Design Example of Smoke Extraction System Using CFD Fire Simulation (CFD 화재 시뮬레이션을 이용한 여객선 제연설비의 성능기반 설계 사례)

  • Lee, Jung-Moo;Kim, Sung-Hoon;Lee, Sung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.454-461
    • /
    • 2010
  • The new SOLAS regulation permits the alternative design approach for the approval of designs which deviate from those where prescriptive rules apply. The new approach is being promoted by recent advances of noble designs such as those employing large public spaces in passenger ships. From the respect of fire safety, it is needed to show that the level of safety of new design is equivalent to what can be achieved from the prescriptive rules where the fire simulation is regarded to be the essential tool. This paper provides an overview of the process of performance-based design of the smoke extraction system in a cafeteria of a ROPAX. FDS, a CFD fire simulation software is used to show that the field-model software can improve the fire safety over what are expected from prescriptive rule sets or zone-model application.

Study on the Available Safe Egress Time (ASET) Considering the Input Parameters and Model Uncertainties in Fire Simulation (화재시뮬레이션에서 입력변수 및 모델 불확실도가 고려된 허용피난시간(ASET)에 관한 연구)

  • Han, Ho-Sik;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.112-120
    • /
    • 2019
  • To improve the reliability of a safety assessment using a fire simulation in domestic PBD, the evaluation method of ASET considering the uncertainties of the input parameters and numerical model of fire simulation was carried out. To this end, a cinema and officetel were selected as the representative fire spaces. The main results were as follows. Considering the uncertainty of the heat release rate, which has the greatest effect on the major physical quantities presented in the life safety standard, significant changes in temperature, CO, and visibility occurred. In addition, when the bias factors reflecting the uncertainty of the numerical model were applied, there were no significant changes in temperature and CO concentration. On the other hand, the visibility was increased considerably due to the low prediction performance of smoke concentration in FDS. Finally, the reason why the physical quantity determining the ASET in domestic PBD is mainly visibility was discussed, and the application of uncertainty of the input parameters and numerical model in a fire simulation was suggested for an accurate ASET evaluation.

The Comparative Analysis of Passenger Evacuation Results Using CFAST and FLUENT (CFAST 와 FLUENT 화재유동해석을 통한 승객피난 시뮬레이션 결과 비교분석)

  • Jang, Yong-Jun;Park, Won-Hee;Jung, Woo-Sung;Lee, Chang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1354-1361
    • /
    • 2007
  • The evacuation simulation study was performed with the boundary condition of a fire simulator, referring to Dae-gu Subway Fire Accident which was a real station fire. The subway station was modelled from B3F station building to B2F waiting room in fire simulation. Also, a fire simulation were performed with CFAST and FLUENT. In CFAST, the total 29 zones were divided into 18 station buildings in B3F and 11 station buildings in B2F. In FLUENT, the simulated space had the same establishment as zone of CFAST. The study focused on possibility for application of fire simulation in underground station by comparing the resulted values from two simulators. For application of fire effect, the fire data were loaded directly to EXODUS in the case of CFAST and performed a passenger evacuation simulation. In the case of FLUENT, Out Data values of a fire simulation were difficult to be compatible with EXODUS. Two resulted values of passenger evacuation simulation by fire simulation were compared with the Dae-gu Subway Fire Accident in reality.

  • PDF

Simulation Study on the Fire Safety of AsanOeam Folk and JeonjuHanok Village

  • Park, Sun-gyu;Mishima, Nobuo;Kwon, Young-jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.259-260
    • /
    • 2016
  • Our research group, which was organized by the South Korean and Japanese researchers, have carried out research about natural disaster in our regional heritage villages derived from the concept of ICT(information communication technology)-based DPD(disaster prevention design). In this research, we performed simulation analysis on the fire safety diagnosis in Asan-Oeam folk and JeonjuHanok village for developing our research of ICT-based PBD. In order to do this, we used fire simulation program which was developed by BRI(Building Research Institute) of Japan. Based on the results of fire simulation of Asan-Oeam folk and JeonjuHanokvillage, we can demonstrated that the fire which broken out inregional heritage folk village will be easily expanded to adjacent houses, because the house which are built with wood structure.

  • PDF