• Title, Summary, Keyword: FT-IR microscopy

Search Result 269, Processing Time 0.032 seconds

Identification of Microplastics in Sea Salts by Raman Microscopy and FT-IR Microscopy (라만 및 FT-IR 현미경을 이용한 천일염 중 미세플라스틱 분석)

  • Cho, Soo-Ah;Cho, Won-Bo;Kim, Su-Bin;Chung, Jae-Hak;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.243-251
    • /
    • 2019
  • Microplastics (MP) are found in large quantities in the oceans, posing a major threat to the ecosystem. In Korea, MPs have been reported to be detected in sea salts. In order to analyze MPs, information on their composition, size, and shape is required. FT-IR microscopy is used frequently to measure sizes larger than 20 ㎛. Recently, however, Raman microscopy, which can analyze ultrafine plastics below 20 ㎛, has been applied extensively. In this study, 10.0 g samples of commercially available salts were dissolved and filtered through a 45 ㎛ mesh filter with a size of 25.4 mm × 25.4 mm. These filtered samples were then analyzed by both FT-IR microscopy and Raman microscopy. A total of four MPs, including three polyethylene (PE) of size 70-100 ㎛ and a polypropylene (PP) of size 170 ㎛, were detected by FT-IR microscopy, while 10 MPs, including nine PE of size 10-120 ㎛ and one polystyrene (PS) of size 40 ㎛, were detected by Raman microscopy. Approximately, 1,000 MPs/kg was estimated, which was almost two times higher than the previous reported levels (~550-681 particles/kg in sea salts); this is because Raman microscopy can detect much smaller MPs than FT-IR microscopy. A total of 113 particles were found using Raman microscopy: Carbon (35, 31.5 %), minerals (28, 25 %), and glass (16, 14.4 %) were dominant, forming around 70% of the total, but MPs (10, 8.8 %) and cellulose (5, 4.5 %) were also found. Raman microscopy has great potential as an accurate method for measuring MPs, as it can measure smaller size MPs than FT-IR microscopy. It also has a reduced sample preparation time.

Study of the hydrogen concentration of SiNx film by Fourier transform infrared spectroscopy (Fourier transform infrared spectroscopy를 이용한 SiNx박막의 수소농도 연구)

  • Lee, Seok-Ryoul;Choi, Jae-Ha;Jhe, Ji-Hong;Lee, Lim-Soo;Ahn, Byung-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.215-219
    • /
    • 2008
  • The bonding structure and composition of silicon nitride (SiNx) films were investigated by using Fourier transform infrared spectroscopy (FT-IR). SiNx films were deposited on Si substrate at $340^{\circ}C$ using a conventional PECVD system. The compositions of Si and N in SiNx films were confirmed by using Rutherford backscattering spectroscopy (RBS) and photoluminescence (PL) analysis. The surface morphology of SiNx films was also analyzed by using atomic force microscopy (AFM). It was found that the contents of NH(at. %) is the reverse related with those of SiH corresponding to the result of FT-IR. we conclude that a quantitative analysis on SiNx films can be possible through a precise detection of the contents of H in SiNx films with a FT-IR analysis only.

Study of Carbon Nanotubes Properties by Post-treatment Conditions (후처리 조건에 따른 탄소나노튜브 특성의 변화)

  • Choi Sung-Hun;Lee Jae-Hyeong;Yang Jong-Seok;Park Dae-Hee;Heo Jeong-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.930-934
    • /
    • 2006
  • This paper reports a change of carbon nanotubes(CNTs) properties by post-treatment process after growth of CNTs. CNTs were treated by thermal method and solution method, and then investigated in detail using field emission scanning electron microscopy(FE-SEM), high resolution transmission scanning electron microscopy(HR-TEM), RAMAN spectroscopy, and Fourier Transform Infrared Spectrometer (FT-IR). FT-IR spectra showed that the amount of hydroxyl generated on surface of CNTs were changed with post-treatment condition. FE-SEM and TEM images were shown CNTs diameter and density variations were dependent with their treatment conditions. RAMAN spectroscopy was shown that carbon nanotubes structure vary with treatment conditions.

Properties of the Natural and CVD Synthetic Diamonds for Identification (천연과 CVD 합성 다이아몬드의 감별을 위한 물성 연구)

  • Kim, Yunwoo;Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.350-356
    • /
    • 2014
  • Recently, Chemical Vapor Deposition (CVD) synthetic diamonds have been introduced to the jewelry gem market, as CVD technology has been making considerable advances. Unfortunately, CVD diamonds are not distinguishable from natural diamonds when using the conventional gemological characterization method. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. In our study, we employed optical microscopy and spectroscopy techniques, including Fourier transform infra-red (FT-IR), UV-VIS-NIR, photoluminescence (PL), micro Raman, and cathodoluminescent (CL) spectroscopy, to determine the differences between a natural diamond (0.30 cts) and a CVD diamond (0.43 cts). The identification of a CVD diamond was difficult when using standard gemological techniques, UV-VIS-NIR, or micro-Raman spectroscopy. However, a CVD diamond could be identified using a FT-IR by the Type II peaks. In addition, we identified a CVD diamond conclusively with the uneven UV fluorescent local bands, additional satellite PL peaks, longer phosphorescence life time, and uneven streaks in the CL images. Our results suggest that using FT-IR combined with UV fluorescent images, PL, and CL analysis might be an appropriate method for identifying CVD diamonds.

Identification for the Vivid Yellow Diamonds (비비드 옐로우 다이아몬드의 감별 방안 연구)

  • Song, Jeongho;Yun, Yury;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.493-497
    • /
    • 2012
  • We propose a new reliable, fast, and low cost identification method for similarly looking 0.3ct vivid yellow color of natural, HPHT treated, and synthesized diamonds. Conventional optical microscopy as well as low temperature PL(photoluminescence), FT-IR, UV-VIS-NIR, micro-Raman spectroscopy, and vibrating sample magnetometry(VSM) characterization were executed. We could not distinguish the natural diamonds from the treated or the synthesized stones with an optical microscopy, PL, FT-IR, and UV-VIS-NIR spectroscopy. However, we could identify the treated diamond with micro-Raman spectroscopy due to unique $1440cm^{-1}$ peak appearance. VSM revealed easily the synthesized diamond because of its ferromagnetic behavior. Our preliminary propose on employing the Micro-Raman spectroscopy and VSM might be suitable for identification of the similar looking vivid yellow colored diamonds.

A Method for Observation of Benign, Premalignant and Malignant Changes in Clinical Skin Tissue Samples via FT -IR Microspectroscopy

  • Skrebova, Natalja;Aizawa, Katsuo;Ozaki, Yukihiro;Arase, Seiji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.457-459
    • /
    • 2002
  • Sunlight causes various types of adverse skin changes on the sun-exposed areas of the skin, in which the most hazardous one is the induction of malignant skin tumours. FT -IR spectra were obtained from specimens excised from normal skin, BCCs, SCCs, MMs, nevi, lesions of solar keratosis and Bowen's disease. Tissue samples from freshly frozen specimens were cut into 2 sections in strictly sequential order to be stained with H & E for histopathological analysis, and then to be air-dried on CaF$_2$ slide glasses for further spectral data acquisition from defined area of interest. Intra- and inter-sample variations were estimated within grouped lesion categories according to each skin component. Mean spectra for each type of tissue pathology in the 800-1800 $cm^{-1}$ / region was interpreted using the classical group frequency approach that showed the most visible differences in spectra of benign, premalignant and malignant changes directly related to protein conformation and nucleic acid bases. The relative intensity of the nucleic acid peak was increased with progression to malignancy. In addition, PCA was able to evaluate and maximise the differences in the spectra by reducing the number of variables characterizing each patient and pathology category. This type of approach to non-destructively estimate the complexity of IR-spectra of inhomogeneous samples such as skin demonstrates the advantage of FT -IR microspectroscopy to be able to observe diseased states (benign, premalignant, malignant) and distinguish them from normal against a huge background of inter- and intra-subject variability.

  • PDF

A Studies on the Surface Morphology and Fine Structure of PET Film Treated by DMF (DMF로 처리된 PET Film의 표면모폴로지와 미세구조에 대한 연구)

  • 서은덕
    • Textile Coloration and Finishing
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • As a simulation of solvent-assisted dyeing, the solvent effects on the structure of polyethylene terephthalate(PET) film treated by dimethylformamide(DMF) were investigated. The effects were evaluated by the atomic force microscopy(AFM) topographical changes and FT-IR spectrum analysis. PET films treated with DMF at $70^{\circ}C$ for several different treatment time(20, 40, and 60 min). AFM topography showed that, with increasing treatment time by DMF, PET surfaces became smooth due to the swelling phenomenon and the rigid structure changed into flexible state which was contributed to increase the surface area of PET films. FT-IR spectrum analysis showed that DMF and molecular chains of PET interacted each other via their polar carbonyl groups and that DMF also affected the out-of-plane bending vibration mode of phenyl ring of PET.

Study on Applying Techniques of Wooden Lacquerware Artifacts Excavated from Imdang-dong Site, Gyeongsan, Korea (경산 임당 유적 출토 칠기유물의 칠기법 연구)

  • Lee, Kwang-Hee;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.33 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • In order to identify the application techniques of wooden lacquerware artifacts, optical/polarized light microscopy, Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) were conducted on the lacquer films of 61 wooden lacquerware artifacts excavated from the Imdang-dong site, Gyeongsan, Korea. Powdered soil, soot, and charcoal were used as a filler for the undercoat, and iron oxide ($Fe_2O_3$) was used as a red pigment. Five different applying techniques were identified for the undercoat according to the composition of the lacquer. Eight different application techniques were identified for the final coat (on the middle layer and surface layer). Totally seventeen application techniques were identified based on the combination methods of the undercoat and finalcoat. Consequently, the undercoating techniques of Imdang-dong lacquerwares were found to be similar to those of lacquerwares from excavated in other provinces. However, the use of iron oxide as a red pigment at Gyeongsang province is very characteristic compared with others.

A Study on the Synthesis and Characterization of Carbon Nitride Thin Films by Magnetron Sputter (마그네트론 스퍼터에 의한 Carbon Nitride 박막의 합성 및 특성에 관한 연구)

  • Park, Gu-Bum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.3
    • /
    • pp.107-112
    • /
    • 2003
  • Amorphous carbon nitride thin films have been deposited on silicon (100) by reactive magnetron sputtering method. The basic depositon parameters varied were the r.f. power(up to 250 W), the deposition pressure in the reactor(up to 100 mtorr) and Ar:$N_2$ gas ratio. FT-IR and X-ray photoelectron spectra showed the presence of different carbon-nitrogen bonds in the films. The surface topography of the films was studied by scanning electron microscopy(SEM) and atomic force microscopy(AFM).

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF