• Title, Summary, Keyword: FISPACT

Search Result 5, Processing Time 0.033 seconds

Comparison of General Concrete and Low-radiation Concrete as Shielding Materials for Medical Linear Accelerators (의료용 선형가속기 차폐 재질로써 일반 콘크리트와 저 방사화 콘크리트 비교)

  • Lee, Dong Yeon;Kim, Jung Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • This study is a neutron activation for concrete that shields medical linear accelerator facilities. Comparison of general concrete and low activation concrete. The simulation method was simulated using MCNPX (Ver. 2.5.0) and FISPACT-2010, and the shielding ability for photon and neutron beams was calculated and neutron activation evaluation was carried out. As a result, the shielding capacity was 20 ~ 50 cm efficient in general concrete, and activate evaluation in low activation concrete was calculated to be low in radioactivity concrete, but all were estimated to not exceed their own allowable concentration in self - disposal. As a result of the comprehensive analysis, it is considered effective to use ordinary concrete.

Automated inventory and material science scoping calculations under fission and fusion conditions

  • Gilbert, Mark R.;Fleming, Michael;Sublet, Jean-Christophe
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1346-1353
    • /
    • 2017
  • The FISPACT-II inventory simulation platform is a modern computational tool with advanced and unique capabilities. It is sufficiently flexible and efficient to make it an ideal basis around which to perform extensive simulation studies to scope a variety of responses of many materials (elements) to several different neutron irradiation scenarios. This paper briefly presents the typical outputs from these scoping studies, which have been used to compile a suite of nuclear physics materials handbooks, providing a useful and vital resource for material selection and design studies. Several different global responses are extracted from these reports, allowing for comparisons between materials and between different irradiation conditions. A new graphical output format has been developed for the FISPACT-II platform to display these "global summaries"; results for different elements are shown in a periodic table layout, allowing side-by-side comparisons. Several examples of such plots are presented and discussed.


  • Noh, Si-Wan;Lee, Jai-Ki;Shin, Chang-Ho;Kwon, Tae-Je;Kim, Jong-Kyung;Lee, Young-Seok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • The second phase of the national program for fusion energy development in Korea starts from 2012 for design and construction of the fusion DEMO reactor. Radiological assessment for the fusion reactor is one of the key tasks to assure its licensability and the starting point of the assessment is determination of the source terms. As the first effort, the activities of the coolant due to activated corrosion product (ACP) were estimated. Data and experiences from fission reactors were used, in part, in the calculations of the ACP concentrations because of lack of operating experience for fusion reactors. The MCNPX code was used to determine neutron spectra and intensities at the coolant locations and the FISPACT code was used to estimate the ACP activities in the coolant of the fusion DEMO reactor. The calculated specific activities of the most nuclides in the fusion DEMO reactor coolant were 2-15 times lower than those in the PWR coolant, but the specific activities of $^{57}Co$ and $^{57}Ni$ were expected to be much higher than in the PWR coolant. The preliminary results of this study can be used to figure out the approximate radiological conditions and to establish a tentative set of radiological design criteria for the systems carrying coolant in the design phase of the fusion DEMO reactor.

The Effects of Impurity Composition and Concentration in Reactor Structure Material on Neutron Activation Inventory in Pressurized Water Reactor (경수로 구조재 내 불순물 조성 및 함량이 중성자 방사화 핵종 재고량에 미치는 영향 분석)

  • Cha, Gil Yong;Kim, Soon Young;Lee, Jae Min;Kim, Yong Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.91-100
    • /
    • 2016
  • The neutron activation inventories in reactor vessel and its internals, and bio-shield of a PWR nuclear power plant were calculated to evaluate the effect of impurity elements contained in the structural materials on the activation inventory. Carbon steel is, in this work, used as the reactor vessel material, stainless steel as the reactor vessel internals, and ordinary concrete as the bio-shield. For stainless steel and carbon steel, one kind of impurity concentration was employed, and for ordinary concrete five kinds were employed in this study using MCNP5 and FISPACT for the calculation of neutron flux and activation inventory, respectively. As the results, specific activities for the cases with impurity elements were calculated to be more than twice than those for the cases without impurity elements in stainless and carbon steel. Especially, the specific activity for the concrete material with impurity elements was calculated to be 30 times higher than that without impurity. Neutron induced reactions and activation inventories in each material were also investigated, and it is noted that major radioactive nuclide in steel material is Co-60 from cobalt impurity element, and, in concrete material, Co-60 and Eu-152 from cobalt and europium impurity elements, respectively. The results of this study can be used for nuclear decommissioning plan during activation inventory assessment and regulation, and it is expected to be used as a reference in the design phase of nuclear power plant, considering the decommissioning of nuclear power plants or nuclear facilities.