• Title, Summary, Keyword: Exhaust emissions

Search Result 844, Processing Time 0.044 seconds

The Effect of Olefin Contents on Exhaust Emissions from Gasoline Vehicles (휘발유 차량에서 배출가스에 미치는 올레핀의 영향)

  • Park, Cheonkyu;Jung, Choongsub;Na, Byungki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.37-43
    • /
    • 2014
  • Exhaust emissions were studied as a function of gasoline olefin composition in two vehicles-MPI and GDi engine equipped vehicles. Three different gasolines were tested which varied in olefin contents-12, 16 and 20 vol%. Exhaust emissions in two vehicles were affected by changes in gasoline olefin composition. Responses to changes in olefins were similar in both vehicles : reducing olefins lowered emissions of NOx and CO. Measured exhaust emissions included total hydrocarbons (THC), oxides of nitrogen (NOx), carbon monooxide(CO), carbon dioxide($CO_2$), formaldehyde, benzene, toluene, xylene, 1,3-butadiene and acetylene.

Environmentally Friendly Hybrid Power System for Cultivators

  • Kim, Sang Cheol;Hong, Young Ki;Kim, Gook Hwan
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Purpose: In this study, a hybrid power system was developed for agricultural machines with a 20-KW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator, which was evaluated using output tests. Methods: The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using the hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. Results: The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341 g/KWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7 KW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. Conclusions: The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. Lower exhaust gas emissions of the hybrid system have considerable advantages in closed work environments such as crop production facilities; therefore, agricultural machinery with less exhaust gas emissions should be commercialized. However, the high manufacturing cost and complexity of the proposed system are challenges which need to be solved in the future.

Exhaust Gas Recirculation/Water Injection Experimental Results for NOx Emission Reduction in Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.823-832
    • /
    • 2007
  • This paper presents the static characteristics of EGR-WI combined system. The water injection system was statically characterized by recording the engine exhaust outlet $NO_x$ emissions for comparison with baseline $NO_x$ emissions. Effects of the water injection system on CO and HC emissions and fuel consumption were examined. The research engine used for these experiments was a 103 kW turbocharged, intercooled, 2.5 L VM Motori CIDI engine equipped with a cooled EGR system. Water injection in the intake system demonstrated the potential for significant reductions in engine outlet $NO_x$ emissions. The system has reduced engine outlet $NO_x$ emissions by 40-50%, but caused significant increases in CO and HC emissions, particularly at low loads. Fuel consumption effects were minimal.

Exhaust Emissions Reduction using Unburned Exhaust Gas Ignition Technology and Hydrocarbon Adsorber (미연 배기가스 점화 기술과 탄화수소 흡착기를 이용한 배기저감)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, D.S.;Lee, Y.S.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.150-155
    • /
    • 2000
  • Exhaust emissions from vehicles are the main source of air pollution. Many researchers are trying to find the way of reducing vehicle emissions, especially in the cold transient period of the FTP-75 test. In this study, UEGI (Unburned Exhaust Gas Ignition) technology, warming up the close-coupled catalytic converter (CCC) by igniting the unburned exhaust mixture using two glow plugs installed in the upstream of the catalyst, was developed. It was applied to an exhaust system with a hydrocarbon adsorber to ensure an effective reduction of HC emission during the cold start period. Results showed that the CCC reaches the light-off temperature (LOT) in a shorter time compared with the baseline exhaust system, and HC and CO emissions are reduced significantly during the cold start.

  • PDF

Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향)

  • 배명환;하태용;류창성;하정호;박재윤
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance and Exhaust Emissions In a Gasoline Engine

  • Jinyoung Cha;Junhong Kwon;Youngjin Cho;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1442-1450
    • /
    • 2001
  • The EGR system has been widely used to reduce nitrogen oxides (NO$\_$x/) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance,70x and the other exhaust emissions from 1.5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NO$\_$x/ and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COV$\_$imep/) and the timings of maximum pressure (P$\_$max/) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC)

  • PDF

Analysis of Emission Gas Characteristics for Gasoline Vehicles using the Inspection Results of Car Emission (운행차 배출가스 정밀검사 결과를 이용한 가솔린 차량에 대한 배출가스 특성 분석)

  • Roh, Hyun Gu
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.128-135
    • /
    • 2018
  • In this study, the following conclusions could be obtained from the analysis of emissions contribution rates and features for contaminated emissions by 13,456 gasoline vehicles passed in the vehicle load test (ASM-idle) under the inspection year 2013 to 2017. It was confirmed that the contamination of the CO, HC, NOx by the displacement is reduced on over 3L engine. As a result of comparing the exhaust gas in the low speed idle mode and the AS2525 mode, the exhaust gas in the low speed idle mode was measured high. It is estimated that if ISG function is applied, emissions from idle condition will be reduced. NOx emissions were reduced when the engine power was above 200HP. It has been confirmed that the amount of exhaust emissions are significantly reduced for vehicles manufactured after 2004. As a result of analyzing the exhaust gas according to the season, it is judged that there is a correlation between HC and NOx according to the ambient temperature. The concentration of exhaust emission in vehicles with high accumulated distance increases, which is considered to be the result of aging of the vehicle.

An experimental Study on Exhaust Emissions of CNG Dedicated Engine (CNG 전소기관의 배출가스에 관한 실험적 연구)

  • 오용석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • A CNG dedicated engine one of the types in natural gas engine is assessed as the most effective mechanism for the reduction of exhaust emissions. This work described the measuring results of a CNG dedicated engine by the experiment, In this study the characteristics of the CNG engine was investigated and then measured exhaust gas by engine performance mode at maximum load condition with increasing the engine speed in the range of 1,000-2,200rpm. The exhaust emission was also measured at D-13 mode as well as AVL-8 mode.

  • PDF

The Affect of Fuel Properties on Exhaust Emissions Formation of Used Vegetable Oil in a Diesel Engine (폐식용유를 연료로 하는 디젤 기관(機關)의 배기(排氣) 배출물 생성(生成)에 미치는 연료(燃料) 성상(性狀)의 영향(影響))

  • Oh, Y.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.162-175
    • /
    • 1995
  • Exhaust emissions in diesel engine are affected by fuel properties, but the reason for this is not clear. Especially, the recent strong interest in using low-grade fuel such as used vegetable oil as alternative diesel fuel demands extensive investigation in order to clarify the exhaust emissions. The purpose of this study is to evaluate the feasibility of a used vegetable oil as an alternative fuel in a diesel engine in terms of exhaust emissions. The emission concentration of used vegetable oil such as formaldehyde and acrolein is two times than that of diesel fuel. However, since that of alcohol is ten times than that of used vegetable oil and that concentration is very low, it is not a problem for human health.

  • PDF

A Study on the Performance and Exhaust Emissions of Agricultural Diesel Engines by Use of Rice Bran Oil as a Fuel (미강유 연료에 의한 전용 디젤기관의 성능 및 비기 배출물에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.816-826
    • /
    • 1998
  • The effects of rice bran oil on the characteristics of performance and exhaust emissions have been experimentally examined by a single cylinder four cycle direct injection water-cooled and agricultural diesel engine operating at several loads and speeds. The experiments are conducted with light oil blends of rice bran with light oil and rice bran oil as a fuel. The fuel injection timing if fixed to $22^{\circ}$ BTDC regardless of fuel type engine loads and speeds. Any oxygen is not included in light oil while the oxygen contents of 10.7% are included in rice bran oil. The lower calorific value of rice bran oil is less than light oil and the viscosity is very high compared with light oil. In pre-sent study it is found that these major differences of chemical and physical properties control the combustion parameters that affect the performance and exhaust emissions of diesel engines using a rice bran oil as fuels.

  • PDF