• Title, Summary, Keyword: Epithelial growth factor receptor

Search Result 48, Processing Time 0.13 seconds

Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells

  • Sikder, Md. Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Park, Su Hyun;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.3
    • /
    • pp.120-126
    • /
    • 2014
  • Background: We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. Results: We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. Conclusion: The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.

Effects of Keratinocyte Growth Factor on the Uterine Endometrial Epithelial Cells in Pigs

  • Ka, Hak-Hyun;Bazer, Fuller W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1708-1714
    • /
    • 2005
  • Keratinocyte growth factor (KGF) functions in epithelial growth and differentiation in many tissues and organs. KGF is expressed in the uterine endometrial epithelial cells during the estrous cycle and pregnancy in pigs, and receptors for KGF (KGFR) are expressed by conceptus trophectoderm and endometrial epithelia. KGF has been shown to stimulate the proliferation and differentiation of conceptus trophectoderm. However, the role of KGF on the endometrial epithelial cells has not been determined. Therefore, this study determined the effect of KGF on proliferation and differentiation of endometrial epithelial cells in vitro and in vivo using an immortalized porcine luminal epithelial (pLE) cell line and KGF infusion into the uterine lumen of pigs between Days 9 and 12 of estrous cycle. Results showed that KGF did not stimulate proliferation of uterine endometrial epithelial cells in vitro and in vivo determined by the $^3$H]thymidine incorporation assay and the proliferating cell nuclear antigen staining, respectively. Effects of KGF on expression of several markers for epithelial cell differentiation, including integrin receptor subunits $\alpha$4, $\alpha$5 and $\beta$1, plasmin/trypsin inhibitor, uteroferrin and retinol-binding protein were determined by RT-PCR, Northern and slot blot analyses, and immunohistochemisty, and KGF did not affect epithelial cell differentiation in vitro and in vivo. These results show that KGF does not induce epithelial cell proliferation and differentiation, suggesting that KGF produced by endometrial epithelial cells acts on conceptus trophectoderm in a paracrine manner rather than on endometrial epithelial cells in an autocrine manner.

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

Transforming Growth Factor-$\beta$ is a Possible Paracrine Mediator in the Human Endometrial Decidualization (인간자궁내막의 탈락막화 (Decudualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할)

  • Park, Dong-Wook;Choi, Dong-Soon;Kim, Mi-Ran;Hwang, Kyung-Joo;Jo, Mi-Yeong;Ahn, Seong-Hee;Min, Churl-K.;Ryu, Hee-Sug
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2003
  • Objectives: To investigate the role of TGF (Transforming growth factor-$\beta$) involved in the paracrinic communication during decidualization between UEC (uterine epithelial cells) and USC (uterine stromal cells), we have employed a co-culture system composed of human endometrial epithelial and stromal cells in defined hormonal conditions. Design: In the co-culture, endometrial epithelial cells cultured in the matrigel-coated cell culture insert are seeded on top of the endometrial stromal cells cultured within a collagen gel. The co-culture was maintained for 48 hours under the following hormonal conditions: progesterone dominant condition (100 nM P4 and 1 nM E2) or estrogen-dominant condition (100 nM E2 and 1 nM P4). 10 ng/ ml HGF and/or 10 ng/ml TGF-$\beta$1 are added. Methods: RT-PCR is utilized to detect mRNAs quantitatively. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining are utilized to detect proteins in the tissue. Results: Prolactin mRNA is expressed in the co-cultured stromal cells under the progesterone dominant condition. TGF-$\beta$1 and its receptors are expressed in both the co-cultured epithelial and stromal cells irrespective of the steroid present, which is in contrast with no or negligible expression of TGF-$\beta$1 or its receptor in cells separately cultured. Both estrogen and progesterone significantly elevate the concentration of hepatocyte growth factor (HGF) in the conditioned medium of the co-culture with the value of 4, 325 pg/ml in E2-dominant and 2, 000 pg/ml in P4-dominant condition compare to 150 pg/ml in no hormone. In separately cultured stromal cells, administration of HGF induces the expression of TGF receptor 1 in both hormonal conditions, but induction of TGF receptor 2 is only manifest in the P4-dominant condition. Administration of TGF-$\beta$ and HGF directly induce the decidualization marker prolactin mRNA in separately cultured stromal cells. Conclusion: It is likely that steroid hormones induces prolactin mRNA indirectly by promoting the cell to cell communication between the stromal and the epithelial cells. TGF-$\beta$ and HGF are two possible paracrine mediators in the human endometrial decidualization.

Expression of Tumor Necrosis Factor-alpha-induced Protein 8 in Pancreas Tissues and its Correlation with Epithelial Growth Factor Receptor Levels

  • Liu, Ke;Qin, Cheng-Kun;Wang, Zhi-Yi;Liu, Su-Xia;Cui, Xian-Ping;Zhang, Dong-Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.847-850
    • /
    • 2012
  • Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) is a recently identified protein considered to be associated with carcinogenesis. To investigate its expression pattern in pancreatic cancer patients and to analyse its correlation with clinicopathological significance and the expression levels of epithelial growth factor receptor (EGFR), immunohistochemistry was performed to detect the TNFAIP8 and EGFR proteins in pancreatic cancers, pancreatitis tissues, and healthy controls. The results showed stronger staining of TNFAIP8 protein in pancreatic cancer tissues compared with normal pancreas tissue. Furthermore, in 56 patients with pancreatic cancer, the expression levels of TNFAIP8 in patients with low tumor stage was higher than that with high tumor stage, and correlated with tumor staging and lymph node metastasis (P<0.05). Furthermore, TNFAIP8 expression positively correlated with EGFR levels (r=0.671135, P<0.05). These results indicate that TNFAIP8 may play important roles in the progression of pancreatic cancer.

Anti-epidermal growth factor receptor (EGFR) monoclonal antibody and DNA topoisomerase inhibitor reduce growth of salivary adenoid cystic carcinoma in a murine model (항-표피성장인자수용체 단클론항체와 DNA 토포이소머라제 억제제에 의한 마우스 모델에서의 타액선 선낭암종 성장 억제)

  • Park, Young-Wook;Lee, Hee-Su
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.3
    • /
    • pp.177-185
    • /
    • 2010
  • Introduction: Epidermal growth factor receptor (EGFR) is expressed in human epithelial tumors including salivary cancers, and known to be correlated with tumor progression and poor clinical courses in some epithelial tumors. In this study, we determined the therapeutic effect of the anti-EGFR monoclonal antibody Erbitux (C225, cetuximab) in combination with the DNA topoisomerase I inhibitor irinotecan (CPT-11) on human salivary adenoid cystic carcinoma (SACC) cells growing in nude mice. Materials and Methods: At first, immunocytochemical analysis for the expression of EGFR and phosphorylated EGFR (pEGFR) on a human salivary ACC cell line (ACC3). To determine the in vivo effects of Erbitux and CPT-11, nude mice with orthotopic parotid tumors were randomized to receive intraperitoneal Erbitux (1 mg) two times per week, intraperitoneal Irinotecan (50 mg/kg) once per week, Erbitux plus CPT-11, or placebo. (control) Tumor volume and weight were measured. And mechanisms of in vivo activity of Erbitux and/or CPT-11 were determined by immunohistochemical/ immunofluorescent analyses. Results: Immunocytochemical staining of ACC3 demonstrated that EGFR was expressed and phosphorylated. CPT-11 inhibited ACC tumor growth in nude mice. Tumors of mice treated with CPT-11 and CPT-11 plus Erbitux exhibited increased tumor cell apoptosis and decreased microvessel density, which correlated with a decrease in the tumor volume in nude mice. But, CPT-11 seems not to be synergistic with Erbitux in our ACC3 model system. Conclusion: These results suggest that anti-EGFR monoclonal antibody and the DNA topoisomerase I inhibitor will be effective in the treatment of recurred or metastatic lesions of salivary ACC.

Hormonal Regulation of Insulin-Like Growth Factor Binding Protein Secretion by a Bovine Mammary Epithelial Cell Line

  • Kim, W.Y.;Chow, J.C.;Hanigan, M.D.;Calvert, C.C.;Ha, J.K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • A mammary epithelial cell line (MAC-T) established as a model for lactation was utilized to identify and characterize effects of various hormones upon insulin-like growth factor binding protein secretion. Ligand and immunoblot analyses of conditioned media indicated that insulin-like growth factor binding protein-2 was secreted by MAC-T cells. Insulin-like growth factor-I stimulated insulin-like growth factor binding protein-2 secretion in a dose-dependent manner, but prolactin and bovine somatotropin did not alter insulin-like growth factor binding protein-2 secretion. Insulin increased and cortisol decreased insulin-like growth factor binding protein-2 secretion. Effects of insulin-like growth factor-I on insulin-like growth factor binding protein-2 secretion support previous studies using primary cultures of bovine mammary cells and bovine fibroblasts. Effects of cortisol and insulin on insulin-like growth factor binding protein-2 secretion may be explained by changes in protein synthesis. In addition, supraphysiological doses of insulin can cross-react with the insulin-like growth factor-I receptor and stimulate insulin-like growth factor binding protein-2 secretion. MAC-T cells provide a model system to study mechanisms that regulate local insulin-like growth factor-I bioactivity.

MicroRNA-222 Expression as a Predictive Marker for Tumor Progression in Hormone Receptor-Positive Breast Cancer

  • Han, Song-Hee;Kim, Hyun Jeong;Gwak, Jae Moon;Kim, Mimi;Chung, Yul Ri;Park, So Yeon
    • Journal of Breast Cancer
    • /
    • v.20 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • Purpose: The microRNA-221/222 (miR-221/222) gene cluster has been reported to be associated with the promotion of epithelial-mesenchymal transition (EMT), downregulation of estrogen receptor-${\alpha}$, and tamoxifen resistance in breast cancer. We studied the expression of miR-222 in human breast cancer samples to analyze its relationship with clinicopathologic features of the tumor, including estrogen receptor status, expression of EMT markers, and clinical outcomes. Methods: Quantitative real-time polymerase chain reaction was performed to detect the expression of miR-222 in 197 invasive breast cancers. Expression of EMT markers (vimentin, smooth muscle actin, osteonectin, N-cadherin, and E-cadherin) was evaluated using immunohistochemistry. Results: High miR-222 levels were associated with high T stage, high histologic grade, high Ki-67 proliferation index, and HER2 gene amplification. Its expression was significantly higher in the luminal B and human epidermal growth factor receptor 2-positive (HER2+) subtypes than in the luminal A and triple-negative subtypes. In the hormone receptor-positive subgroup, there was a significant negative correlation between miR-222 and estrogen receptor expression, and miR-222 expression was associated with EMT marker expression. In the group as a whole, high miR-222 expression was not associated with clinical outcome. However, subgroup analyses by hormone receptor status revealed that high miR-222 expression was a poor prognostic factor in the hormone receptor-positive subgroup, but not in the hormone receptor-negative subgroup. Conclusion: This study showed that miR-222 is associated with down-regulation of the estrogen receptor, EMT, and tumor progression in hormone receptor-positive breast cancer, indicating that miR-222 might be associated with endocrine therapy resistance and poor clinical outcome in hormone receptor-positive breast cancer.

Effect of High Glucose on MUC5B Expression in Human Airway Epithelial Cells

  • Ye, Sang Baik;Choi, Yoon Seok;Choi, Yo Han;Bae, Chang Hoon;Kim, Yong-Woon;Park, So-Young;Song, Si-Youn;Kim, Yong-Dae
    • Clinical and Experimental Otorhinolaryngology
    • /
    • v.10 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Objectives. Excessive production of mucus results in plugging of the airway tract, which can increase morbidity and mortality in affected patients. In patients with diabetes, inflammatory airway disease appears with more frequent relapse and longer duration of symptoms. However, the effects of high glucose (HG) on the secretion of mucin in inflammatory respiratory diseases are not clear. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of HG on MUC5B expression in human airway epithelial cells. Methods. The effect and signaling pathway of HG on MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA. Results. HG increased MUC5B expression and epidermal growth factor receptor (EGFR) expression, and activated the phosphorylation of EGFR and p38 mitogen-activated protein kinase (MAPK). Pretreatment with EGFR inhibitor significantly attenuated the HG-induced phosphorylation of p38 MAPK, and pretreatments with p38 inhibitor or EGFR inhibitor significantly attenuated HG-induced MUC5B expression. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked HG-induced MUC5B expression. Conclusion. These findings suggest that HG induces MUC5B expression via the sequential activations of the EGFR/p38 MAPK signaling pathway in human airway epithelial cells.