• Title, Summary, Keyword: Energy storage

Search Result 3,787, Processing Time 0.074 seconds

Review on Thermal Storage Media for Cavern Thermal Energy Storage (지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토)

  • Park, Jung-Wook;Park, Do-Hyun;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.243-256
    • /
    • 2012
  • Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

Classification and function of the Storage System in the Thermal Energy Supply System (축열시스템의 종류 및 열에너지 공급시스템에서의 역할)

  • Lee, Dong-Won;Cho, Soo;Jang, Cheol-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • /
    • pp.141-146
    • /
    • 2008
  • For the efficient use of thermal energy and its related equipments, optimal energy in view of quality and quantity should be timely provided. The core of thermal energy storage technology deals with an energy efficiency for effective energy storage and supply. The relative importance of thermal energy storage technology has been underestimated so far, and the specific projects on this filed have been performed intermittently. For the efficient and systematic approach of the energy supply system projects on thermal energy storage technology, we conduct the survey on the current status of this field. Firstly, classify into the thermal energy storage and describing the recent research for each system. The necessity and importance of thermal energy storage technology is identified through this study. It reveals that the thermal energy storage is the mandatory technology to solve the difference of supply and demand in thermal loads. It would greatly contribute to the combined heat and power(CHP) system. The urgent technologies for the commercial value and the core technologies for the CHP system are classified with this study.

  • PDF

Intelligent Energy Harvesting Power Management and Advanced Energy Storage System (지능형 에너지 저장시스템과 ESS 개발을 위한 소재 및 공정 기술)

  • Heo, Kwan-Jun;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.417-427
    • /
    • 2014
  • Renewable energy sources such as solar, wind and hydro provides utilizing renewable power and reduce the using fossil fuels. On the other hand, it is too critical to apply power system due to the intermittent nature of renewable energy sources, the continuous fluctuations of the power load, and the storage with high energy density. Energy storage system, including pumped-hydroelectric energy storage, compressed-air energy storage, superconducting magnetic energy storage, and electrochemical devices like batteries, supercapacitors and others have shown that solve some of the challenges. In this paper, we review the current state of applications of energy storage systems, and atomic layer deposition technology, graphene materials on the energy storage systems and processes.

Novel methods of increasing the storage volume at Pumped Storage Power plants

  • Storli, Pal-Tore
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 2017
  • The paper presents two novel concepts of increasing the energy storage capacity at pumped storage power plants, both existing and new projects. The concepts utilize compressed air as a working medium to displace water from a volume originally not available for storage. The concepts are likely to give additional storage volume at a low cost, however, much development and many investigations are needed before the concepts can be shown to be technical and economical feasible solutions for energy storage. The concepts are disclosed so that researchers and utilities can start those investigations, hopefully helping the green transition by providing highly valuable energy storage for a future renewable energy having a much higher share of renewable energies than the current systems.

Calculation of Appropriate Subsidies for Energy Storage System to Improve Power Self-sufficiency Consider Microgrid Operation (마이크로그리드 운영에 따른 전력자립 향상을 위한 에너지저장장치의 적정보조금 산정)

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.486-492
    • /
    • 2017
  • In recent years, renewable energy sources have been mentioned as solution to environmental regulation and energy supply-demand. Energy storage systems are needed to mitigate the intermittent output characteristics of renewable energy sources and to operate micro grid efficiently using renewable energy generation systems. However, despite the necessity of energy storage system, this cannot secure the economical efficiency of the energy storage system by high initial cost. In this paper, a micro grid is constructed to supply electric power to industrial customers by using solar power generation system and energy storage system among renewable energy generation power sources and operated to improve energy independence. In the case study, we use photovoltaic system which is representative renewable energy generation system. Unlike conventional photovoltaic system, this system uses floating photovoltaic system with the advantage of having high output and no land area limitations. It is operated for the purpose of improving energy independence in the micro grid. In order to secure economical efficiency, the energy storage system operates a micro grid with a minimum capacity. Finally, this paper calculates the appropriate subsidy for the energy storage capacity.

Investigation of Thermal Management Parameters of Metal Hydride Based Hydrogen Storage System (금속수소화물 기반 수소저장시스템의 열관리 인자 조사)

  • PARK, CHU SIK;KIM, JONG WON;BAE, KI KWANG;JEONG, SEONG UK;KANG, KYOUNG SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 2018
  • Metal hydride based hydrogen storage under moderate temperature and pressure gives the safety advantage over the gas and liquid storage methods. Still solid-state hydrogen storage including metal hydride is below the DOE target level for automotive applications, but it can be adapted to stationary or miliary application reasonably. In order to develop a modular solid state hydrogen storage system that can be applied to a distributed power supply system composed of renewable energy - water electrolysis - fuel cell, the heat transfer and hydrogen storage characteristics of the metal hydride necessary for the module system design were investigated using AB5 type metal hydride, LCN2 ($La_{0.9}Ce_{0.1}Ni_5$). The planetary high energy mill (PHEM) treatment of LCN2 confirmed the initial hydrogen storage activation and hydrogen storage capacity through surface modification of LCN2 material. Expanded natural graphite (ENG) addition to LCN2, and compression molding at 500 atm improved the thermal conductivity of the solid hydrogen storage material.

Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride (수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구)

  • Sim, Kyu-Sung;Myung, Kwang-Sik;Kim, Jung-Duk;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.

A Consideration on the Superconductivity Energy Storage Technology (초전도 에너지 저장 기술에 대한 고찰)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.691-698
    • /
    • 2015
  • Recently, the power industry has a great interest in the superconducting energy storage device as a way to maximize energy efficiency to cope with global warming. A superconducting energy storage device can archive maximization of electric energy use efficiency by storing in the form of a magnetic field energy or a kinetic energy without loss a large amount of electrical energy at the non-peak load and then converting it again into electric energy at the peak load. Therefore, in this study, such as the concept of the superconducting energy storage technologies, the present state of its research and development and its applications are surveyed and analyzed to establish methodology applying the superconducting energy storage technologies to power system.

Development of Energy Storage System for Urban Transit System (도시철도용 에너지저장시스템 개발에 관한 연구)

  • Lee, Hanmin;Kim, Gildong;Joung, Euijin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.162.2-162.2
    • /
    • 2010
  • The energy storage system is considered to be one of the useful devices for energy storing and recycling. the energy storage system can save energy cost and stabilize the system voltage. This paper presents the development of two energy storage systems. One is 750V system for light rail system. the other is 1500V system for heavy rail system.

  • PDF

The Study on Prediction of Hot Water Extraction in a Thermal Energy Storage System (축열시스템의 온수이용 예측에 관한 연구)

  • Cho, W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.71-80
    • /
    • 1998
  • In thermal energy storage system, energy collected from many types of heat source is stored in a storage tank and then supply to load for demand. Lately, practical use of thermal energy storage system and attention to essential use of energy have been increased. From this point of view, especially, a study about the energy extraction process from a storage tank is necessary. So in this study, useful rate of hot water and hot water extraction efficiency was analysed respect to dynamic and geometric parameters dominating the hot water extraction process.

  • PDF