• Title, Summary, Keyword: Electrophoresis

Search Result 2,999, Processing Time 0.052 seconds

Recent Advances in DNA Sequencing by End-labeled Free-Solution Electrophoresis (ELFSE)

  • Won, Jong-In
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • End-Labeled Free-Solution Electrophoresis (ELFSE) is a new technique that is a promising bioconjugate method for DNA sequencing (or separation) and genotyping by both capillary and microfluidic device electrophoresis. Because ELFSE enables high-resolution electrophoretic separation in aqueous buffer alone (i.e., without a polymer matrix), it eliminates the need to load viscous polymer networks into electrophoresis microchannels. To achieve microchannel DNA separations with high performance, ELFSE requires monodisperse perturbing entities (i.e., drag-tags), which create a large amount of frictional drag when pulled behind DNA during free-solution electrophoresis, and which have other properties suitable for microchannel electrophoresis. In this article, the theoretical concepts of ELFSE and the required characteristics of the drag-tag molecules for the ultimate performance of ELFSE are reviewed. Additionally, the merits and limitations of current drag-tags are also discussed in the context of recent experimental data of ELFSE separation (or sequencing).

Applications of Capillary Electrophoresis and Microchip Capillary Electrophoresis for Detection of Genetically Modified Organisms

  • Guo, Longhua;Qiu, Bin;Xiao, Xueyang;Chen, Guonan
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.823-832
    • /
    • 2009
  • In recent years, special concerns have been raised about the safety assessment of foods and food ingredients derived from genetically modified organisms (GMOs). A growing number of countries establish regulations and laws for GMOs in order to allow consumers an informed choice. In this case, a lot of methods have been developed for the detection of GMOs. However, the reproducibility among methods and laboratories is still a problem. Consequently, it is still in great demand for more effective methods. In comparison with the gel electrophoresis, the capillary electrophoresis (CE) technology has some unique advantages, such as high resolution efficiency and less time consumption. Therefore, some CE-based methods have been developed for the detection of GMOs in recent years. All kinds of CE detection methods, such as ultraviolet (UV), laser induced fluorescence (LIF), and chemiluminescence (CL) detection, have been used for GMOs detection. Microchip capillary electrophoresis (MCE) methods have also been used for GMOs detection and they have shown some unique advantages.

Simple Detection of Opines by Paper Electrophoresis for Hairy Roots Transformed with Agrobacterium rhizogenes Strains

  • Cho, Hyeon-Je;Ha, Hyo-Cheol;Lee, Jae-Sung;Widholm, Jack M.
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.92-94
    • /
    • 2001
  • A simple protocol for the detection of opines, cucumopines and mikimopines using a general horizontal or vertical get electrophoresis system for protein or DNA separation in the laboratory are demonstrated. This electrophoresis method can also be applied to other opines as long as correct detection reagent and buffer system are used.

  • PDF

Analysis of Health-related Microbes by Capillary Electrophoresis

  • Moon, Byoung-Geoun;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1203-1206
    • /
    • 2003
  • Analysis of health-related microbes called probiotics was performed by capillary electrophoresis. A rapid and easy characterization for two important probiotics, Saccharomyces cerevisiae and Enterococcus feacalis, was obtained in the running buffer containing poly(ethylene oxide). Quantitation of probiotic (Saccharomyces cerevisiae) shows a good linearity between the peak area versus the concentration of microbe. From the comparison of electropherograms of antidiarrhea, it was found that capillary electrophoresis could be employed for the quality control and quality assurance for the production of a medicine containing the probiotics.

A Study on Major Components of Bee Venom Using Electrophoresis (전기영동법(Electrophoresis)을 이용한 봉약침의 주요 성분에 관한 연구)

  • Lee, Jin-Seon;Kwon, Gi-Rok;Lee, Seung-Bae
    • Journal of Pharmacopuncture
    • /
    • v.3 no.2
    • /
    • pp.153-168
    • /
    • 2000
  • This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV) using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase $A_2$ was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was $250{wmu}g/ml,\;K-BV\;I\;was\;190{wmu}g/ml,\;K-BVII\;was\;160{wmu}/ml\;and\;C-BV\;was\;45{wmu}/ml5$. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

The characteristics of premeability and formation of clay cake by electrophoresis technique (전기영동기법에 의한 점토케이크의 형성과 투수특성)

  • Kim, Jong-Yun;Kim, Tae-Ho;Kim, Dae-Ra;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • /
    • pp.938-946
    • /
    • 2008
  • This study is on sealing leakage holes where are in landfills to make clay cakes with clay particles, which have a negative surface charge using the method of electrophoresis. Generally, electrophoresis is the motion of charged particles in a colloid under the influence of an electric field; particles with a positive charge go to the cathode and negative to the anode. In this study in order to develop the prevention system of leakages of the leachate in landfills, one-dimensional electrophoresis tests were conducted for determining the properties of the motion of the electrophoresis and cutoff using the method of electrophoresis depending on various the effect factors such as types of clays, concentrations of the clays, and applied electric field. In case of the experiments of determining the optimum clays, Na and Ca-Bentonite, Na and Ca-Montmorillonite, which have greater zeta-potential, cation, exchange capacity as well as ability of cutoff, and Micro-cement inducing cementation were chosen and then the effect of those clays was investigated. Moreover, the properties of the motion and settling of the clays were investigated following electric field varied from 0 to 1V/cm at different concentration of the clays in order to determine both the properties of the motion of the clays and the efficiency of electric field when applying different direct current. Ultimately, the ability of cutoff was examined through measuring the permeability of the clay cakes derived from the one-dimensional electrophoresis tests.

  • PDF

Studies on Bovine Serum Protein Fractions (I, II) (혈청단백질분획(血淸蛋白質分劃)에 대한 연구(硏究) (I, II))

  • Rim, Bong Ho
    • Korean Journal of Veterinary Research
    • /
    • v.5 no.1
    • /
    • pp.1-16
    • /
    • 1965
  • I. A Comparison of Sodium Sulfate Precipitation and Zone(Paper, Agar) Electrophoresis; Many kinds of techniques have been used for fractionating serum proteins. In the present study, using bovine serum, the fractions obtained with sodium sulfate were compared with those determined by zone electrophoresis. 1. Fibrinogen was precipitated with 4 to 10 percent of sodium sulfate. 2. ${\gamma}$-globulin required 10 to 16 percent of the salt for precipitation. 3. ${\beta}$-globulin began to precipitate at 12 percent sodium sulfate, and completed precipitation at approximately 26 percent in paper electrophoresis, while at 22 percent in agar electrophoresis. 4. ${\alpha}$-globulin completed precipitation at 13 to 28 percent sodium sulfate in paper electrophoresis and at 22 percent in agar electrophoresis. 5. Albumin began to precipitate at 14 percent of the salt, and was free from the mixture of globulins approximately at 28 percent in paper electrophoresis, while at 22 percent in agar electrophoresis. The results of comparing fractions by the two methods were as follows: 1. Euglobulin (15%) was equal to the sum of the most ${\gamma}$-globulin and a small quantity of the ${\alpha}$-, and ${\beta}$-globulins. 2. Pseudoglobulin I (15-17.5%) corresponded to the most ${\alpha}$-, ${\beta}$-globulins and a small quantity of albumin. 3. Pseudoglobulin II(18-22%) was a mixture of the ${\alpha}$-, ${\beta}$-globulins and albumin fraction. 4. Albumin (above 22%) contained the most albumin fraction separated by zone electrophoresis and a small quantity of the ${\alpha}$-, and ${\beta}$-globulins. As mentioned above the fractions obtained with sodium sulfate were a mixture of the various proportion of the fractions determined by zone electrophoresis. The solubility of serum fractions to sodium sulfate coincided with the mobility of those by zone electrophoresis. (By percent of sodium sulfate we mean gram of sodium sulfate contained in $100m{\ell}$ of solution). II. Immunological Studies on Serum Protein Fractions with Sodium Sulfate; In the previous report the fractions of bovine serum protein with sodium sulfate compared with those obtained by zone electrophoresis, and the findings were that the former contained various proportion components of the latter. In this study the author studied whether or not the fractions with sodium sulfate are simple component antigenically by immunoelectrophoresis and micro double diffusion test (Immuno-precipitation), using rabbit antiserum to bovine serum. In immunoelectrophoresis, normal bovine serum developed with rabbit antibovine serum showed about ten distinct precipitin arcs. The distribution of these arcs was as follows: 1 albumin, 2 ${\alpha}_1$-, 3 ${\alpha}_2$-, 2 ${\beta}_1$-, ${\beta}_2$-, and 1 ${\gamma}$-globulin (Fig. 7, 9). In micro double diffusion test, five to six precipitation bands could be seen between antigens and antibody, the order of the precipitation bands location is albumin, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-globulin from the side of antiserum well (Fig.19). Frequently the ${\alpha}$-, and ${\beta}$-precipitation bands were separated into two or three precipitation bands, which indicated that these globuline are not a pure component antigenically as shown in immuno-electrophoresis. In both Immunological methods, the two ${\alpha}$-, ${\beta}$-precipitin arcs and bands appeared clear and strong, indicating that the two globulins reacted as strong antigens. The precipitate reaction of ${\gamma}$-globulin was shown at 12 to 16 percent sodium sulfate; ${\beta}$-globulin at 12 to 20 percent; ${\alpha}$-globulin at 12 to 22 percent (immuno-electrophoresis), at 12 to 26 percent (Diffusion); and albumin at above 22 percent. Antigenically euglobulin contained ${\gamma}$-, ${\beta}$-, and ${\alpha}$-globulins, Pseudoglobulin I and Pseudoglobulin II were composed of ${\alpha}$-, and ${\beta}$-globulins, and albumin was a mixture of ${\alpha}$-globulin and albumin determined by zone electrophoresis. The results indicated that the fractions of serum protein obtained by either method were constituents of various proteins antigenically except ${\gamma}$-globulin and albumin by Zone electrophoresis.

  • PDF

Development of analytical method capable of identifying the chemically or biologically oriented variants of human growth hormone by capillary electrophoresis

  • Shin, Hyoung-Goo;Hong, Sung-Tae;Son, Jae-Woon;Youn, Yu-Seok;Han, Hye-Seon;Lee, Kang-Choon
    • Proceedings of the PSK Conference
    • /
    • /
    • pp.230.3-230
    • /
    • 2003
  • The therapeutic use of protein pharmaceuticals produced by recombinant DNA technology is increasing in recent decades. In order to investigate the quality of recombinant proteins, it is important to identify and assign the impurities produced in the process of recombination or in storage conditions. Capillary Electrophoresis is emerging technology exhibiting high sensitivity, selectivity and speed and may be most powerful tools for this application. In this study, human growth hormone (hGH) has been analyzed by various mode of capillary electrophoresis such as capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), and capillary isoelectric focusing (cIEF) to indicate the chemically or biologically oriented variants and the degraded fragments. (omitted)

  • PDF

Separation of large DNA molecules by pulsed field gel electrophoresis (역전장 전기영동장치를 이용한 대형 DNA 분리에 관한 연구)

  • Joo, Yi-seok;Casey, Thomas A;Yoon, Yong-dhuk
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.81-85
    • /
    • 1993
  • Gel electrophoresis has proven to be one of the most useful of DNA separation and purification. The new technique of pulsed field gel electrophoresis (PFGE) is high resolution separation of large size DNA moleculs. Conventional continuous gel electrophresis can not be separation of large DNA fragments(20~50 k base). Field inversion gel electrophoresis(FIGE) is very useful for large DNA molecules. We have found that a pulse ratio ; 2 : 1, time ; 24hrs., volts ; $10^{volts}/_{cm}$, start ; 0.45sec, end ; 1sec, is most effectively resolves DNA fragment in the 6~50k base.

  • PDF

PDMS/Glass Based DNA Microbiochip for Restriction Enzyme Reaction and Electrophoresis Detection (DNA의 제한효소 반응 및 전기영동 검출용 PDMS/유리 마이크로바이오칩)

  • Choi Joon-Young;Ahn Yoo Min;Hwang Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • This paper reports low-cost PDMS/glass based DNA microbiochip for the restriction enzyme reaction and its products detection using the capillary electrophoresis. The microbiochip ($25mm{\times}75mm$) has the heater integrated reactor ($5{\mu}{\ell}$) for DNA restriction enzyme reaction at $37^{\circ}C$ and the microchannel ($80\;{\mu}m{\times}100\;{\mu}m{\times}58mm$) for the capillary electrophoresis detection. It is experimentally confirmed that the digestion of the plasmid ($pGEM^{(R)}-4Z$) by the enzyme (Hind III and Sca I) is performed for less than 10 min and its electrophoresis detection is able to sequentially on the fabricated microbiochip.