• Title, Summary, Keyword: Electrode

Search Result 9,392, Processing Time 0.06 seconds

Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구)

  • 하문수;정순종;송재성;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

Resistance Spot Weldability of Low Density Lightweight Steel according to Electrode Shape (전극 형상에 따른 저비중 경량강판의 저항 점 용접 특성)

  • Hwang, Insung;Yoon, Hyunsang;Kim, Dongcheol;Kang, Munjin;Kim, Jae Do;Kim, Young-Min
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.52-57
    • /
    • 2017
  • In this study, resistance spot weldability of lightweight steel with high Al contents was evaluated using various electrode shapes. The six types of electrode shape were prepared with different electrode face diameter and radius. The tensile shear tests were carried out to investigate the failure behaviors. Also, the nugget size and hardness were measured and compared with various electrode shapes. The experimental results show that the acceptable weld current region for low density lightweight steel could be obtained with 10mm electrode face diameter and 76mm electrode face radius.

Brightness Property of ICCP(Inductive Capacitive Coupled Plasma) for External Electrode Fluorescent Lamp (EEFL) (외부전극 형광램프를 위한 유도-용량형 플라즈마의 휘도특성)

  • Lee, Seong-Jin;Choi, Gi-Seung;Chai, Su-Gil;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1657-1658
    • /
    • 2006
  • An external electrode fluorescent lamps (EEFLs) have the advantage of a long lifetime in the early stages of the study on plasma discharge, interest in the lamp continues. Studies on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter. To solve these problems of CCFL, EEFL (External Electrode Fluorescent Lamp) is introduced. Because electrode of EEFL is on the outer surface of discharge tube, the electrode is perfectly prevented from the sputtering by accelerated ions. And it is possible to drive the many CCFLs at the same time, because EEFL shows the positively resistant characteristic. But EEFL has the large non-radiative power loss in sheath. In this study the novel electrode structure was introduced in order to reduce non-radiative power loss in sheath of EEFL. The novel electrode structure comes from the idea to combine conceptually capacitive discharge with inductive discharge. Thus, this study verifies the change in the optical characteristics according to the change in electrode structure through a Maxwell's electromagnetic field simulation and examines the relationship between the change in the EEFL electrode structure and brightness by measuring the optical characteristics.

  • PDF

A Basic Study of Plasma Reactor of Dielectric Barrier Discharge for the Water Treatment (수처리용 유전체장벽 플라즈마 반응기에 대한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.623-630
    • /
    • 2011
  • This study investigated the degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) by using dielectric barrier discharge (DBD) plasma. The DBD plasma reactor of this study consisted of a quartz dielectric tube, titanium discharge (inner) and ground (outer) electrode. The effect of shape (rod, spring and pipe) of ground electrode, diameter (9~30 mm) of ground electrode of spring shape and inside diameter (4~13 mm) of quartz tube, electrode diameter (1~4 mm), electrode materials (SUS, Ti, iron, Cu and W), height difference of discharge and ground electrode (1~15.5 cm) and gas flow rate (1~7 L/min) were evaluated. The experimental results showed that shape of ground electrode and materials of ground and discharge electrode were not influenced the RNO degradation. The thinner the diameter of discharge and ground electrode, the higher RNO degradation rate observed. The effect of height gap of discharge between ground electrode on RNO degradation was not high within the experimented value. Among the experimented parameters, inside diameter of quartz tube and gas flow rate were most important parameters which are influenced the decomposition of RNO. Optimum inside diameter of quartz tube and gas flow rate were 7 mm and 4 L/min, respectively.

Measurement of Soot Nano-Particle Using LIIM(Laser-Induced Ion Mobility) (LIIM(Laser-Induced Ion Mobility) 계측을 이용한 매연 나노입자 측정)

  • Lee, Eui-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1110-1116
    • /
    • 2004
  • Experimental measurements of laser-induced ion mobility(LIIM) were performed for ethene/air premixed flames operated near the soot inception point. Soot was ionized using a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the post-flame region. ionization signals were collected using both a single electrode and dual electrode configuration. Prior LIIM studies have focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the LIIM diagnostic to these geometries, a dual electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the LIIM diagnostic to detect soot inception in the post-flame region of a premixed flame using a dual electrode configuration was investigated. For the different dual electrode configurations tested, the dual parallel electrode geometry was observed to be most sensitive to detect the soot inception point in a premixed flame.

Effects of electrode configurations on uniformity of copper films on flexible polymer substrate prepared by ECR-MOCVD (ECR-MOCVD에 의해 연성 고분자 기판에 제조된 구리막의 균일도에 전극의 형태가 미치는 영향)

  • 전법주;이중기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • Copper films were prepared by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The DC bias is connected to the electrode which placed 1∼3cm above the polymer substrate. The pulse electrical field around the electrode attracts the positive charged copper ions generated from the dissociation of copper precursor, $Cu(hfac)_2$, under ECR plasma. Condensation of supersaturated copper ions in the space between the electrode and substrate, makes it possible to deposit copper film on the polymer substrate even at room temperature. In this study, optimization of the electrode configuration was carried out in order to obtain the uniform films. The uniformity of the deposited films were closely related to the parameters of electrode geometry such as electrode shape, thickness, grid size and the spacing between electrodes. The most uniform copper film was observed with the electrode that enabled uniform electrical field distribution across the whole dimension of electrode.

Degradation Accelerated Stress Test of Electrode and Membrane in PEMFC (PEMFC에서 전극과 전해질 막의 열화 가속 시험)

  • Song, Jin-Hoon;Kim, Sae-Hoon;Ahn, Byung-Ki;Ko, Jai-Joon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.778-782
    • /
    • 2012
  • Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. Therefore in this work, AST (Accelerated Stress Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. There was interaction between membrane degradation and electrode degradation. Membrane degradation reduced the decrease range of catalyst active area by electrode degradation. Electrode degradation reduces increase range of the hydrogen crossover current and FER (Fluoride Emission Rate) by membrane degradation.

Fabrication and Properties of CPW Electrode for Optical Modulator (광변조기용 CPW 전극제작 및 특성)

  • 임영삼;김영준;박계춘
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.962-965
    • /
    • 1999
  • We designed and fabricated a travelingwave CPW(coplanar waveguide) electrode for LiNbO$_3$ optical modulator. To Investigate the variation of microwave refractive index of these electrodes, we prepared the CPW electrode samples as a function of electrode thickness and measured the TDR and S-parameter. From this results, we could know the electrode conditions of index matching to 2.20 for 1550nm optical wave index for applying LiNbO$_3$ optical modulator and described. Also, we discussed the some properties of CPW electrode for applying LiNbO$_3$ optical modulator.

  • PDF

Address Electrode for PDP by Ink-Jet Method

  • Park, Lee-Soon;Im, Moo-Sik;Jung, Young-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.775-777
    • /
    • 2003
  • Several methods are available for the fabrication of electrode pattern for the plasma display panel(PDP) including screen printing and photolithographic method. Piezo type ink-jet printing method is considered to the method of choice for electrode patterning in manufacturing of PDP. Both silver ink and absorbent layer paste formulation were developed for ink-jet printing of electrode pattern. The ink-jet printing of silver electrode with preformed absorbent layer was especially suitable for the patterning of address electrode for high resolution PDP.

  • PDF

Stability Characteristics of Sn Species Behavior on Surface of a Sn-modified Pt Electrode for Electrolytic Reduction of Nitrate Ion (질산염 이온의 전해 환원을 위한 Sn-modified Pt 전극 표면에서의 Sn 안정성 거동 특성)

  • Kim, Kwang-Wook;Kim, Seong-Min;Kim, Yeon-Hwa;Lee, Eil-Hee;Jee, Kwang-Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.433-441
    • /
    • 2007
  • This work investigated the stability of a Sn-modified Pt electrode, which was used for reduction of nitrate, fabricated by an adsorption or electro-deposition of Sn on Pt. In order to find the causes for instability of the electrode, the effects of the solutions in which the electrode was used and the potential applied to the electrode on the electrochemical and metallurgical behaviors of Sn on Pt were studied. The Sn of freshly- prepared modified-Sn Pt electrode existed as Sn hydroxide form, which brought about an easy loss of the electro-activity of the electrode even staying in water, especially in acid solution. When the Sn-modified Pt electrode was used for the reduction of nitrate, the electro-activity of the electrode was affected depending on the potential applied to the electrode. When a more negative potential than the redox equilibrium potential between $Sn(OH)_2$ and Sn was applied to the electrode, the Sn hydroxide was converted to Sn that could diffused into Pt, which leaded to the loss of electro-activity of the electrode as well. The solid diffusion of Sn increased linearly with the applied potential. The Sn-electrodeposited Pt electrode which had more Sn on the electrode was more favorable to maintaining the integrity of the electrode during the reduction of nitrate than the Sn-adsorbed Pt electrode prepared in the under-potential deposition way.