• Title, Summary, Keyword: Electro-Fenton

Search Result 18, Processing Time 0.034 seconds

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater

  • Niaei, Hadi Adel;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.173-181
    • /
    • 2020
  • Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.

Hydrogen Peroxide Generation of DSA for Electro-Fenton Reaction and Removal of Rhodamine B (Electro-Fenton 반응을 위한 불용성 전극의 과산화수소 생성과 Rhodamine B의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.175-182
    • /
    • 2008
  • This study investigates the optimal conditions for electrogenerated hydrogen peroxide production and the application of the electro-Fenton process using DSA electrodes. The influences of parameters for the hydrogen peroxide generation such as electrode materials, electrolyte concentration, current, pH, air flow rate and electrode distance were investigated using a laboratory scale batch reactor. The relative performance for hydrogen peroxide generation of each of the six electrodes is : Ru-Sn-Ti > Ru-Sn-Sb > Ru > Ir > Pt > Sn-Sb. Optimum NaCl dosage, current and air flow rate were 2.0 g/l, 12.5 A and 2 l/min, respectively. When the pH is low, hydrogen peroxide concentration was high. Electrode distance dos not effect to a hydrogen peroxide generation. A complete color removal was obtained for RhB (200 mg/l) at the 8 min mark of the electro-Fenton process under optimum operation conditions of $Fe^{2+}$ 0.105 g/l and 5.0 A. The electro-Fenton process increased initial reaction and decreased final reaction time. However the effect was not high.

Decolorization of Rhodamine B by Electro Fenton-like Reaction (전기 펜톤-유사 반응을 이용한 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The electro-chemical decolorization of Rhodamine B (RhB) in water has been carried out by electro Fenton-like process. The effect of distance, material and shape of electrode, NaCl concentration, current, electric power, $H_2O_2$ and pH have been studied. The results obtained that decrease of RhB concentration of Fe(+)-Fe(-) electrode system was higher than that of other electrode system. The decrease of RhB concentration was not affected electrode distance and shape. Decolorization of electro Fenton-like reaction, which was added $H_2O_2$ onto the electrolysis using electrode was higher than electrolysis. Addition of NaCl decreased the electric consumption. The lower pH is, the faster initial reaction rate and reaction termination time observed.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

Electrochemical Degradation of Phenol by Electro-Fenton Process (전기-펜톤 공정에 의한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Oxidation of phenol in aqueous media by electro-Fenton process using Ru-Sn-Sb/graphite electrode has been studied. Hydrogen peroxide was electrically generated by reaction of dissolved oxygen in acidic solutions containing supporting electrolyte and $Fe^{2+}$ was added in aqueous media. Phenol degradation experiments were performed in the presence of electrolyte media at pH 3. Effect of operating parameters such as current, electrolyte type (NaCl, KCl and $Na_2SO_4$) and concentration, $Fe^{2+}$ concentration, air flow rate and phenol concentration were investigated to find the best experimental conditions for achieving overall phenol removal. Results showed that current of 2 A, NaCl electrolyte concentration of 2g/l, 0.5M concentration of $Fe^{2+}$, air flow rate of 1l/min were the best conditions for mineralization of the phenol by electro-Fenton.

Study of optimal reduction plan for wastewater sludge generated from oil refinery (정유 공장에서 발생된 폐수 슬러지의 최적 감량화 방안 연구)

  • Choi, Jae-Woo;Jung, Jong-Min;Shim, Natalia;Lee, Sang-Hyup;Park, Cheol-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.395-406
    • /
    • 2010
  • In this study, anaerobic digestion, electro-oxidation and electro-fenton oxidation processes were investigated to reduce oily refinery sludge. Anaerobic digestion process was not suitable for oily activated sludge reduction because of characteristics itself and, as experimental results revealed, reduction efficiency was low for electro-oxidation process. However, 40% total suspended solid reduction of oily activated sludge was obtained by electro-fenton oxidation process, operating at pH=1, 0.5 A and $Fe^{2+}$:$H_2O_2$ ratio = 1:30. In addition, higher reduction efficiency was obtained as reaction time was increased (30, 60, 90, 120 min) despite of low $H_2O_2$ concentration. From the results, it has been investigated that electro-fenton oxidation is efficient process for oily activated sludge reduction.

Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process

  • Babaei-Sati, Rasoul;Parsa, Jalal Basiri
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.52
    • /
    • pp.270-276
    • /
    • 2017
  • The aim of this paper is to perform the electrosynthesis of polypyrrole/multi-walled carbon nanotube (MWCNT) nanocomposites with different concentration of MWCNT on graphite cathode for the electrogeneration of $H_2O_2$ by reducing dissolved oxygen. The results show that cathode modified with nanocomposite with 2.5% w/w MWCNT (GPM-2.5) had highest electrocatalytic activity. In addition, a maximum concentration of $H_2O_2$, up to $5.6mg\;L^{-1}$, is achieved under the conditions of -0.55V (vs. SCE) and pH = 3 after 10 min electrolysis. Furthermore, it is demonstrated that the GPM-2.5 cathode has a high efficiency in decolorization of basic blue 41 by electro-Fenton process.

A study on reduction of excess sludge in activated sludge system from a petrochemical plant using electro fenton process (전기펜톤공정을 이용한 석유화학공장 폐활성슬러지의 감량화 가능성 평가)

  • Chung, Chong Min;Kim, Kyung Il;Shim, Natalia;Park, Chul Hee;Lee, Sang Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.669-678
    • /
    • 2009
  • The reduction of excess activated sludge from petrochemical plant was investigated by the electro fenton (E-Fenton) process using electrogenerated hydroxyl radicals which lead to mineralization of activated sludge to $CO_2$, water and inorganic ions. Factors affecting the disintegration efficiency of excess activated sludge in E-Fenton process were examined in terms of five criteria: pH, $H_2O_2/Fe^{2+}$ molar ratio, current density, initial MLSS (mixed liquid suspended solids) concentration, $H_2O_2$ feeding mode. TSS total suspended solid and $TCOD_{cr}$ reduction rate increased with the increasing $H_2O_2/Fe^{2+}$ molar ratio and current density until 42 and $6.7 mA/cm^2$, respectively but further increase of $H_2O_2/Fe^{2+}$ molar ratio and current density would reduce the reduction rate. On the other hand, as expected, increasing pH and initial MLSS concentration of activated sludge decreas TSS and $TCOD_{cr}$ reduction rate. The E-Fenton process was gradually increased during first 30 minutes and then linearly proceed till 120 minutes. The optimal E-Fenton condition showed TSS reduction rate of 62~63% and $TCOD_{cr}$ (total chemical oxygen demand) reduction rate of 55~56%. Molar ratio $H_2O_2/Fe^{2+} = 42$ was determined as optimal E-Fenton condition with initial $Fe^{2+}$ dose of 5.4 mM and current density of $6.7{\sim}13.3 mA/cm^2$, initial MLSS of 7,600 mg/L and pH 2 were chosen as the most efficient E-Fenton condition.

Efficient electrochemical generation of hydrogen peroxide by means of plasma-treated graphite electrode and activation in electro-Fenton

  • Khataee, Alireza;Sajjadi, Saeed;Pouran, Shima Rahim;Hasanzadeh, Aliyeh
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.56
    • /
    • pp.312-320
    • /
    • 2017
  • Herein, air, argon, nitrogen and oxygen plasmas were used in glow discharge plasma under alternative current to enhance the surface properties of graphite. The plasma-treated graphite electrodes (PTGE) were used as cathode in electro-Fenton (EF) for Acid Orange 7 (AO7) degradation. $O_2$-PTGE exhibited the best activity owing to its improved surface characteristics. Later, the effects of the main operational condition on $O_2$-PTGE efficacy in EF and the stability of $O_2$-PTGE were evaluated and degradation intermediates were identified. Finally, the performance of the studied system was assessed in heterogeneous condition using martite as catalyst and compared with homogeneous system.

Removal of Toxic Organic Compound using Electro-Fenton Reaction (Electro-Fenton 반응을 이용한 유독성 유기화합물 처리)

  • Park, Sang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.551-560
    • /
    • 2004
  • The feasibility and efficiency of the hydrogen peroxide produced by an electrolysis cell reactor was investigated, From regulating voltages for the given reaction time, the concentration of the hydrogen peroxide was gradually increased with increasing voltages. Optimal voltage range was found to be 10~15 V. The concentration of hydrogen peroxide was much higher with oxygen gas than without oxygen gas in the cathodic chamber. But there was a little difference in the generating rate of hydrogen peroxide regardless of the presence of nitrogen gas. Under given conditions, the maximum value of ICE(Instantaneous Current Efficiency) was about 38%, and then current density was 74 $mA/\textrm{cm}^2.$ The specific energy consumption was $0.694[kWh/kg-H_2O_2].$ Since Esp (Specific Energy Consumption)was very little value, It did not demand high energy in this system. Using the hydrogen peroxide gained in the experiment, Fenton's reaction was conducted and the removal of nitrobenzene, 3-chlorophenol and dye wastewater was studied. This results were very similar to the Fenton's reaction by using commercial hydrogen peroxide.