• Title/Summary/Keyword: Ecotoxicity

Search Result 146, Processing Time 0.252 seconds

Environmental Impacts Assessment of the Wheat Flour Production Process Using the Life Cycle Assessment Method (LCA 기법을 이용한 소맥분 생산 공정의 환경 영향 평가)

  • Chu, Duk-Sung;Kwon, Hyuk-Ku;Kim, Jong-Geu;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • The life cycle assessment method for environmental impact assessment was used, in this study, to assess the production process of wheat flour which is the most important material in the food industry. Environmental impact assessments were compared between that of the Ministry of Environment, Republic of Korea (method I) with that of the Ministry of Commerce, Industry and Energy (method II). Life cycle inventories (LCI) was performed using internal and external databases and the production statistics database of company S. The procedure of life cycle impact assessment (LCIA) was followed in terms of classification, characterization, normalization and weighting to identify the key issues. The impact categories of method I were divided into 8 categories with consideration of : abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification and eutrophication. The impact categories of method II were divided into 10 categories with consideration of: abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification, eutrophication, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity.

Variation of hazardous substances in sewage ecotoxicological assessment (하수 원수내 유해물질 변화에 따른 생태독성평가)

  • Seo, Byong-Won;Lee, Ju-Hwa;Lee, Yong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.603-610
    • /
    • 2013
  • According to industrialization, increased toxic chemicals discharge has been causing water pollution. Especially domestic sewage is a major source of water pollution. Sixty percent of the total wastewater discharged is domestic sewage. Self-purification capacity of rivers and streams is drastically reduced by the emission of domestic sewage, industrial wastewater and livestock wastewater. Although domestic sewage is managed by implementing standards and regulations, toxicity effect of domestic sewage to humans and the environment is not yet clearly understood. In this study, by using daphnia magna, the ecotoxicity of domestic swage was assessed. Cl, Cu, Pb, COD, T-N, DO, pH and residual chlorine were investigated as background concentrations. The experiments were conducted with water samples obtained from three local sewage treatment plants. The experiment results indicated that higher level of toxicity corresponds to the higher pollution concentrations. The higher level of combinations of background concentrations such as heavy metals leads to the worse ecotoxicity. Especially, the Cu concentration affects the TU value.

Comparison between Ecotoxicity using Daphnia magna and Physiochemical Analyses of Industrial Effluent (산업폐수에 대한 이화학적 분석과 물벼룩 생태독성의 비교)

  • Lee, Sun Hee;Lee, Hak Sung
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1269-1275
    • /
    • 2014
  • Ecotoxicity assessments with the physiochemical water quality items and the bioassay test using Daphnia magna were conducted for 18 selected effluents of 6 industrial types (metal processing, petroleum refining, synthetic textile manufacturing, plating, alcohol beverage manufacturing, inorganic compound manufacturing) being detected toxicity from industrial effluent in Ulsan city, and the interrelationship between total toxic unit (${\Sigma}TU$) and concentrations of Water Quality Conservation Act in Korea were investigated. The average toxic unit(TU) of effluents for 6 industrial types displayed the following ascending order: petroleum refining (0.2) < synthetic textile manufacturing (0.6) < alcohol beverage manufacturing (0.9) < metal processing (1.3) ${\leq}$ inorganic compound manufacturing (1.3) < plating (3.0). These values were less than effluent permission standard. Based on the result of substances causing ecotoxicity, the correlation analysis was not easy because most of heavy metals were not detected or were less than effluent permission standard. Toxicological assessment of industrial effluent was suitable for the evaluation of the mixture toxicity for pollutant. The whole effluent toxicity test using a variety of species was needed for the evaluation of industrial wastewater.

Research Trends of Ecotoxicity of Nanoparticles in Soil Environment

  • Lee, Woo-Mi;Kim, Shin-Woong;Kwak, Jin-Il;Nam, Sun-Hwa;Shin, Yu-Jin;An, Youn-Joo
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.253-259
    • /
    • 2010
  • We are consistently being exposed to nanomaterials in direct and/or indirect route as they are used in almost all the sectors in our life. Nations across the worlds are now trying to put global regulation policy on nanomaterials. Sometimes, they are reported to be more toxic than the corresponding ion and micromaterials. Therefore, safety research of nanoparticles has huge implications on a national economics. In this study, we evaluated and analyzed the research trend of ecotoxicity of nanoparticles in soil environment. Test species include terrestrial plants, earthworms, and soil nematode. Soil enzyme activities were also discussed. We found that the results of nanotoxicity studies were affected by many factors such as physicochemical properties, size, dispersion method and test medium of nanoparticle, which should be considered when conducting toxicity researches. In particular, more researches on the effect of physicochemical properties and fate of nanoparticles on toxicity effect should be conducted consistently.

Fundamentals of Ecotoxicity Evaluation Methods using Domestic Aquatic Organisms in Korea : (I) Fish (국내 생물종을 이용한 생태독성평가 기반연구 : (I) 어류)

  • Nam, Sun-Hwa;Yang, Chang-Yong;An, Youn-Joo;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.173-183
    • /
    • 2007
  • The Ministry of Environment plans to introduce the Whole Effluent Toxicity (WET) system in Korea. The WET test is well established in developed countries with recognizing of the limitations of physicochemical analysis method and potential risk of chemicals in water medium. Therefore, it is essential to build the ecotoxicity infrastructure for the induction of WET test. In this study, we extensively collected the domestic and foreign toxicity test methods which employ native test species to Korea. And we suggested that the domestic ecotoxicity test methods with domestic test species in Korea through extracting the range of test conditions. Five domestic fish species selected were Carassiu auratus (Crucian carp), Cyprinus carpio(Common carp), Gasterosteus aculeatus (Three spine stickleback), Misgurnus anguillicaudatus (Oriental weather fish) and Oryzias latipes (Japanese medaka), The toxicity test methods with native test species to Korea were collected from the standard methods (OECD, U.S. EPA, ASTM), government reports, SCI papers and domestic papers. We collected the 32 test methods, and suggested the suitable aquatic toxicity test methods for fish. It is expected that this study could prove a useful information to establish the ecotoxicity test methods with domestic aquatic organisms in Korea henceforth.

Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light (자외선에 노출된 광반응성 나노물질의 생태독성 연구)

  • Kim, Shin-Woong;Lee, Woo-Mi;Shin, Yu-Jin;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • As nanotechnology is a key industry, there is growing concern relating to the potential risk of nanoparticles. They are known to be released into the environment via various exposure routes. When nanoparticles are present in water environments, they are supposed to be illuminated by ultraviolet light, and the ecotoxicity of photoactive nanoparticles may be changed. In this study, a review of the ecotoxicity of photoactive nanoparticles, including the mechanisms of phototoxicity, are presented. In order to address this issue, studies on the ecotoxicity to soil and water organisms exposed to photoactive nanoparticles were investigated. The photoactive nanoparticles chosen for this study were zinc oxide, titanium dioxide and fullerene. Microorganisms, nematode, earthworm, algae and fish, etc., were chosen to assess the toxicity of nanoparticles using diverse methods. However, studies on the phototoxicity potentially induced by nanoparticles on UV illumination have been reviewed in only 8 studies. From a few studies, photoactive nanoparticles have shown high dissolution rates under UV conditions, with the released ions observed to profoundly influence test organisms. In addition, NPs exposed to UV produced reactive oxygen species (ROS). These ROS can induce oxidative stress in exposed organisms. Evidence of phototoxicity by nanoparticles were found based on previous studies.

Next Generation Technology to Minimize Ecotoxicity and to Develop the Sustainable Environment: White Biotechnology

  • Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • This review aims to show that industrial sustainable chemistry, minimizing or reducing the ecological impacts by the chemicals, is not an emerging trend, but is already a reality through the application of 'White Biotechnology' such as 'green' chemistry and engineering expertise. A large number of current industrial case studies are presented, as well as new developments from the chemical industry. The case studies cover new chemistry, new process design and new equipment. By articulating the requirements for industrial application of sustainable chemistry, this review also seeks to bridge any existing gap between academia and industry regarding the R & D and engineering challenges needed to ensure green chemistry research enables a more sustainable future chemical industry considering eco-toxicological impacts.