• Title/Summary/Keyword: Ecotoxicity

Search Result 148, Processing Time 0.136 seconds

Research Trends of Ecotoxicity of Nanoparticles in Water Environment (수환경에서 나노입자의 생태독성 연구동향)

  • Lee, Woo-Mi;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.566-573
    • /
    • 2010
  • Nanotechnology has been applied to various fields in our life. Although there is a limitation of nanoparticle monitoring so far, it is expected that nanoparticles are widely distributed in environmental multimedia. Nanoparticle is known to be more toxic than its corresponding bulk material. For this reason, developed countries and international organizations are preparing for future regulation. To evaluate the safety of nanoparticles, nanotoxicity studies are internationally underway. In this study, we evaluated the research trends of ecotoxicity of nanoparticles in water environment. Test species include fish, water flea, and algae. Nanoecotoxicological studies are rapidly increasing and the experimental designs become more sophisticated. Physicochemical properties of nanoparticles should be measured and the ionization potential is important for metal-based nanoparticles. We analyzed the research trends based on the type of nanoparticles and test species. Also experimental aspects of nanoecotoxicology are considered.

Embryotoxicity of Bisphenol A in Daphnia magna (물벼룩에 있어 bisphenol A의 embryo독성)

  • Hwang Gab-Soo
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.81-86
    • /
    • 2006
  • Embryotoxicity tests were performed in Daphnia magna to assess aquatic ecotoxicity of bisphenol A, a well known industrial compound showing estrogen-like activity in vivo, and to examine their effectiveness in the toxicological assessment. The whole embryonic developmental period was classified into 6 stages and developmental abnormality was checked to evaluate the embryotoxicity. In the present study, bisphenol A showed the ability to interfere with embryonic development, suggesting its antiecdysteroidal activity. The rates of mortality, delayed development, deformity and immobility all showed good concentration-response relationship, demonstrating their possibility as useful toxicological indices in daphnid embryotoxicity tests that have been rarely performed so far. It seemed favorable to the test sensitivity that embryos are removed from maternal daphnids around 7 hr after deposition from the ovaries to the brood chamber. These results suggest that daphnid embryotoxicity tests can be one of useful tools available for the assessment of ecotoxicity of various chemicals in the aquatic environment.

Environmental Impact of Phosphogypsum on the Ecotoxicity of A. salina, D. magna, O. latipes, and S. capricornutum

  • Park, Soo-Ho;Han, Bing;Lee, Woo-Bum;Kim, Jongo
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2016
  • The objective of this study was to determine the feasibility of recycled phosphogypsum (PG) as an embankment material with soil by performing batch and column ecotoxicity experiments. A. salina, D. magna, O. latipes and S. capricornutum were selected for the experiment. The effective concentration (EC50) of D. magna was the lowest value, 1.29 mg/L. The survival rates of A. salina, D. magna and O. latipes were more than 90% in the presence of PG leachate in the column test. The toxicity unit (TU) for the organisms was less than 1, indicating that no significant ecotoxicity effect was found. These findings suggested that PG could be recycled for use as an embankment and landfill material with soil.

Characteristics and Toxicity Sensitivity of Korean Dominant Species Daphnia galeata for Ecotoxicity Testing: Comparative Study with Daphnia magna (생태독성실험을 위한 한국 우점종 유리물벼룩(Daphnia galeata)의 특성 및 독성민감도: 큰물벼룩(Daphnia magna)과의 비교연구)

  • Cui, Rongxue;Kwak, Jin Il;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.193-200
    • /
    • 2016
  • Water flea is a widely used test species in the aquatic ecotoxicity test. In Korea, D. magna is currently used as a standard test species, however that do not inhabit in the Korean aquatic ecosystem. In this study, Daphnia galeata, which is a dominant species in the Korean aquatic ecosystem, was collected from domestic lake and investigated to suggest the D. galeata for ecotoxicity assessment in Korea. We investigated the characteristics, life span, and toxicity sensitivity compared with D. magna. The life span test of D. galeata was performed in this study, and then the results were compared to the sensitivity with D. magna to confirm the applicability for ecotoxicity assessment. The 48h-L(E)C50 values for seven heavy metals (As, Cd, Cr, Cu, Hg, Ni, and Zn) of D. galeata and D. magna were collected and analyzed. As a results, shorter lifetime, less reproduction, smaller body size of D. galeata were observed compared with D. magna. D. galeata was similar or more sensitive than D. magna for seven heavy metals. Therefore, we propose that D. galeata is a suitable test species for ecotoxicity testing in Korea.

Basic Performance Evaluation of the Ecotoxicity Detection Device for Heavy Metals (중금속류 생태독성 검출장치의 기초성능 평가)

  • Kim, IlHo;Kim, Ji-Sung;Yoon, Young-Han;Ban, Hyo-Jin;Kim, Seok-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.828-834
    • /
    • 2012
  • The ecotoxicity detection device for preliminary test (Test jig) was manufactured to develop the biological early warning system using Vibrio fischeri. In this study, the ecotoxicity detection charateristics of the Test jig was investigated for 6 heavy metals (Cr, Zn, Pb, Cd, Cu and Hg). It was observed that relative luminescence unit (RLU) of Vibrio fischeri constantly decreased by the concentrations of the tested heavy metals. In contrast with other heavy metals, RLUs of Pb and Hg constantly decreased even at low concentrations. RLU of Hg drastically decreased when its concentration increased from 0.13 mg/L to 0.25 mg/L. $EC_{50}$ values of Cr, Zn, Pb and Cd gradually decreased with exposure time, whereas there was no significant change in $EC_{50}$ values of Cu and Hg with time. On the other hand, $EC_{50}$ values between the Test jig and Reference device were compared to evaluate the ecotoxicity detection performance of the Test jig. No big difference was found in $EC_{50}$ vlaues between the two devices, indicating that the Test jig could be applied as the ecotoxicity detection device for heavy metals.

Plant Assay에 의한 비소오염 토양평가

  • 안윤주;이주영;임승윤;정지영;정혜원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.198-200
    • /
    • 2004
  • Four crop plant species were tested to assess an ecotoxicity in arsenic-amended soils. Test plants were Sorghum bicolor, Cucumis sativus, Triticum aestivum, and Phaseolus radiatus. The presence of arsenic decreased the root and shoot growths. Arsenite was more toxic than arsenate to all test plants. Root growths of Phaseolus radiatus and Cucumis sativus seem to be a good protocol to assess ecotoxicity of soils contaminted by arsenic.

  • PDF

Investigating production parameters and impacts of potential emissions from soybean biodiesel stored under different conditions

  • Ayoola, Ayodeji Ayodele;Adeniyi, David Olalekan;Sanni, Samuel Eshorame;Osakwe, Kamsiyonna Ikenna;Jato, Jennifer Doom
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Biodiesel production parameters and the impact analysis of the potential emissions from both soybean biodiesel and washing water stored in three different environmental conditions were investigated. The effects of the reaction temperature, methanol/oil mole ratio and catalyst concentration on biodiesel yield were considered. And the results showed optimum biodiesel yield of 99% obtained at $54^{\circ}C$, 7 methanol/oil mole ratio and 0.4 wt/wt % catalyst concentration. The potential emissions from both the biodiesel produced and washing water stored (for six weeks) in refrigerator (${\leq}10^{\circ}C$), vacuum (50 kPa) and direct exposure to atmosphere were identified and quantified. Impact analysis of the emissions involved their categorization into: terrestrial acidification, freshwater eutrophication, human toxicity, terrestrial ecotoxicity, climate change and freshwater ecotoxicity. Freshwater ecotoxicity category had the most pronounced negative impact of the potential emissions with $5.237710^{-2}kg\;1,4-DB\;eq$. emissions in Atmosphere, $4.702610^{-2}kg\;1,4-DB\;eq$. emissions in Refrigerator and $3.966110^{-2}kg\;1,4-DB\;eq$. emissions in Vacuum. Climate change had the least effect of the emissions with $6.214106^{-6}kg\;CO_2\;eq$. in Atmosphere, $3.9310^{-6}kg\;CO_2\;eq$. in Refrigerator and $1.6710^{-6}kg\;CO_2\;eq$. in Vacuum. The study showed that the order of preference of the storage environments of biodiesel is vacuum environment, refrigerated condition and exposure to atmosphere.

Study on Determination of Permissible Soil Concentrations for Explosives and Heavy Metals (화약류 및 중금속의 인체위해성평가 및 생태독성에 기반한 토양허용농도도출에 관한 연구)

  • Kim, Moonkyung;Jung, Jae-Woong;Nam, Kyoungphile;Jeong, Seulki
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.19-27
    • /
    • 2015
  • Permissible soil concentrations for explosives (i.e., TNT and RDX) and heavy metals (i.e., Cu, Zn, Pb, and As) heve been derived from human risk and ecotoxicity, respectively. For TNT and RDX, human risk based-permissible soil concentrations were determined as 460 mg-TNT/kg-soil and 260 mg-RDX/kg-soil. Ecotoxicity based-permissible soil concentrations for Cu and Zn were determined from species sensitivity distribution (SSD) and uncertainty factor of 1 to 5, yielding 18.0-40.0 mg-Cu/kg-soil and 46.0-100 mg-Zn/kg-soil. For Pb and As, ecotoxicity data were not enough to establish SSD so that a deterministic method was used, generating 13.8-30.8 mg-Pb/kg-soil and 2.10-4.60 mg-As/kg-soil. It is worth noting that the methodology used to derive permissible concentrations in soil can differ depending on ecotoxicity data availability and socio-economic situations, which results in different permissible concentrations. The permissible concentrations presented in this study have been derived from conservative assumptions for exposure parameters, and thus should be considered as soil standards. In the light of remediation and pollution management of a site of interest, the site-specific and receptor-specific permissible soil concentrations should be derived considering potential receptors, current and future land use, background concentrations, and socio-economic consultation.

Evaluating Ecotoxicity of Surface Water and Soil Adjacent to Abandoned Metal Mines with Daphnia magna and Eisenia fetida

  • Kim, Dae-Bok;Choi, Won-Suk;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • Heavy metal pollution in agricultural fields at the abandoned metal mines has been serious problems in Korea. In order to manage heavy metal pollution in surface water and soil, numerous remediation strategies have been established. Therefore, main purpose of this research was to examine feasibility of ecological toxicity assessment for establishing management strategy in heavy metal polluted agricultural fields. Heavy metal concentration in surface water and soil was monitored along with ecotoxicity experiment with Daphnia magna and Eisenia fetida. Result showed that high toxicity was observed in heavily polluted agricultural field with heavy metals. In case of mortality of Daphnia magna (85%) and Eisenia fetida (6.7%), the highest ratio was observed when heavy metal concentration in surface and soil was high. Calculated ecotoxicity index (EI) ranged 0.06-0.30 and the highest EI was observed in heavily polluted sites among 5 abandoned metal mines. Overall, ecological toxicity assessment is necessary to evaluate heavy metal pollution in agricultural fields near at the abandoned metal mines along with chemical concentration analysis.

The Removal Efficiency of Microcystis spp. and Its Ecotoxicity Using Clay (황토의 Microcystis spp. 제거효율 및 생태독성평가)

  • Park, Hye-Jin;Kim, Sang-Hoon;Park, Woo-Sang;Lee, Jae-Yoon;Lee, Jae-An
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.261-268
    • /
    • 2014
  • Four clays (both natural and commercial types) mainly used in Korea were tested for removal efficiency of Microcystis spp. and ecotoxicity on Daphnia magna and Vibrio fischeri. Four clays (clay A~D) were composed of 91.9~100% of sand (0.02~0.2 mm in particle size). Clay D consisted of lager particles than other clays. Major elements of the four clays were $SiO_2$ (45.3~62.8%), $Al_2O_3$ (18.5~29.7%) and $Fe_2O_3$ (5.4~7.9%). They contained kaolinite (clay mineral), quartz, muscovite, and so on. Clay C and D contained montmorillonite, one of the clay minerals improving clay-cell aggregation. For clay A, B and C, removal efficiency of Microcystis spp. was over 60% at 2 g/L. It reached about 100% at over 5 g/L. For clay D, it was over 60% and 95~100% at 5 g/L and 20 g/L respectively. After adding clays, pH decreased. The greatest drop of pH appeared at clay C. Except for addition of 100 g/L clay C, ecotoxicity on D. magna and V. fischeri didn't appeared at all dose of clays.