• Title, Summary, Keyword: Drought stress

Search Result 378, Processing Time 0.04 seconds

Transcriptomic profiling of the maize (Zea mays L.) to drought stress at the seedling stage

  • Moon, Jun-Cheol;Kim, Hyo Chul;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • /
    • pp.111-111
    • /
    • 2017
  • The development and productivity of maize (Zea mays L.) is frequently impacted by water scarcity, and consequently to increased drought tolerance in a priority target in maize breeding programs. To elucidate the molecular mechanisms of resistance to drought stress in maize, RNA-seq of the public database was used for transcriptome profiling of the seedling stage exposed to drought stress of three levels, such as moderate, severe drought stress and re-watering. In silico analysis of differentially expressed genes (DEGs), 176 up-regulated and 166 down-regulated DEGs was detected at moderated stress in tolerance type. These DEGs was increasing degradation of amino acid metabolism in biological pathways. Six modules based on a total of 4,771 DEGs responses to drought stress by the analysis of co-expression network between tolerance and susceptible type was constructed and showed to similar module types. These modules were discriminated yellow, greenyellow, turquoise, royalblue, brown4 and plum1 with 318, 2433, 375, 183, 1405 and 56 DEGs, respectively. This study was selected 30 DEGs to predicted drought stress response gene and was evaluated expression levels using drought stress treated sample and re-watering sample by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). 23 genes was shown increasing with drought stress and decreasing with re-watering. This study contribute to a better understanding of the molecular mechanisms of maize seedling stage responses to drought stress and could be useful for developing maize cultivar resistant to drought stress.

  • PDF

Proline, Sugars, and Antioxidant Enzymes Respond to Drought Stress in the Leaves of Strawberry Plants

  • Sun, Cunhua;Li, Xuehua;Hu, Yulong;Zhao, Pingyi;Xu, Tian;Sun, Jian;Gao, Xiali
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.625-632
    • /
    • 2015
  • Drought is a severe abiotic stress that affects global crop production. A drought model was created for 'Toyonoka' Fragaria ${\times}$ ananassa, and the effects of drought stress on contents of proline, sugars, and antioxidant enzyme activities were investigated. Strawberry transplants with identical growth were chosen for the experiments and the randomized design included four replications (10 plants per block). The experimental sets differed in the moisture level of the culture medium relative to the range of moisture content as follows: control, 70-85%; mild drought stress, 50-60%; moderate drought stress, 40-50%; and severe drought stress, 30-40%. Drought stress was imposed by limiting irrigation. Plants were sampled and physiological parameters w ere measured on 0, 2, 4, 6, 8, and 10 days after the commencement of droughts tress. The water potential of strawberry leaves decreased in the plants under mild, moderate, and severe stress during the course of the water stress treatment and exhibited a significant difference from the control. Strawberry leaves subjected to drought stress had higher accumulation of proline, sugars, and malondialdehyde, and higher activities of superoxide dismutase, peroxidase, and catalase than leaves of control plants. Malondialdehyde levels increased in parallel with the severity and duration of drought stress. By contrast, antioxidant enzyme activity displayed dynamic responses to drought stress, first increasing and subsequently decreasing as the severity and duration of drought stress increased. These results suggest that strawberry plants respond to drought stress by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. These biochemical response changes may confer adaptation to drought stress and improve the capacity of plants to withstand water-deficit conditions.

Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine

  • Wang, Gui-Ping;Hui, Zhen;Li, Feng;Zhao, Mei-Rong;Zhang, Jin;Wang, Wei
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.213-222
    • /
    • 2010
  • Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to $40^{\circ}C$ for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular $CO_2$ concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.

Photochemical assessment of maize (Zea mays L.) seedlings grown under water stress using photophenomics technique

  • Ham, Hyun Don;Kim, Tea Seong;Yoo, Sung Yung;Park, Ki Bae;Kim, Tae Wan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • /
    • pp.341-341
    • /
    • 2017
  • Abiotic stress adversely affects crop growth worldwide. Drought of the major abiotic stresses have the most significant impact on all of the crop. The main objective of this study was to assess the effects of drought stress on photochemical performance and vitality of maize (Zea mays L.). The photochemical characteristics were analyzed in the context of period of drought stress during the maize growth. Drought experiment was carried out for four weeks, thereafter, the drought treated maize was re-watered. The polyphasic OJIP fluorescence transient was used to evaluate the behavior of photosystem II (PSII) and photosystem I (PSI) during the entire experiment period. In drought stress, the performance Index (PI) level was reached earlier when compared to the controls. For the screening of drought stress tolerance the drought factor index (DFI) of each variety was calculated as follow DFI= log(A) + 2log(B). All the fourteen cultivars show DFI ranged from -0.69 to 0.30, meaning less useful in selection of drought tolerant cultivars. PI and electron transport flux values of fourteen cultivars were to indicate reduction of photosynthetic performance during the early vegetative stage under drought stress. In conclusion, DFI and energy flux parameters can be used as photochemical and physiological index.

  • PDF

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

  • Lim, Jong-Hui;Kim, Sang-Dal
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2013
  • Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.

Influence of Drought Stress on Chemical Composition of Sesame Seed

  • Kim, Kwan-Su;Ryu, Su-Noh;Chung, Hae-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Sesame (Sesamum indicum L.) seeds contain abundant oil and antioxidative lignans related to the seed quality. To evaluate the potential effects of drought stress on the chemical composition of sesame seeds, eighteen cultivars were imposed water-deficit condition by withholding irrigation during 15 days at podding and maturing stage, compared with well-watered plants as control in seed yield and chemical composition. Drought treatments showed great decrease of seed yield with not affecting seed weight. The contents of sesamin and sesamolin decreased while lignan glycosides inversely increased in response to drought stress. Oil content was not significantly changed by drought treatment in spite of its slight decrease. In case of fatty acid composition, there were significant differences in increase of oleic acid while inverse decrease of linoleic acid under drought stress condition. These results demonstrate that the chemical composition of sesame seed may be modified with drought stress. In particular, the increase of sesaminol glucosides with strong antioxidative activity was observed.

Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging

  • Mo, Changyeun;Kim, Moon S.;Kim, Giyoung;Cheong, Eun Ju;Yang, Jinyoung;Lim, Jongguk
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2015
  • Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were obtained for the two soybean cultivars using the results of the developed model during the period of drought stress treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of hyperspectral fluorescence images for assessing drought stress in soybeans.

Cloning, Characterization, and Functional Analysis of Maize DEHYDRIN2

  • Paek, Nam-Chon;Jung, Hun-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.2
    • /
    • pp.116-122
    • /
    • 2002
  • Dehydrins (LEA Dll proteins) are one of the typical families of plant proteins that accumulate in response to dehydration, cold stress, abscisic acid, or during seed maturation. A 1.3-kb cDNA was cloned from a cDNA expression library of 5-day-old germinating maize scutellums under drought stress. The deduced protein sequence indicated a dehydrin gene encoding SK$_3$ LEA protein typically expressed during cold acclimation, but not by drought stress in barley and wheat. Thus, it was named maize DEHYDRIN2 (ZmDhn2). It accumulates rapidly and highly in drought-stressed scutellum and leaf tissues at any stage, but not under cold stress. ZmDhn2 gene was transformed into Arabidopsis thaliana for functional analysis under drought condition. From electrolyte leakage test, no significant difference showed between wild type and transformants under normal growth condition, but the leakage level of electrolyte in wild type plants was about 3 times as high as that in the transformed plants under drought stress. It suggests that ZmDHN2 playa role in increasing drought tolerance.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Expression of NAC transcription factor is altered under intermittent drought stress and re-watered conditions in Hevea brasiliensis

  • Luke, Lisha P.;Sathik, M.B. Mohamed;Thomas, Molly;Kuruvilla, Linu;Sumesh, K.V.
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.142-148
    • /
    • 2017
  • Drought stress is one of the important factors that restrict the expansion of Hevea brasiliensis cultivation to non-traditional regions experiencing extreme weather conditions. Plants respond to drought stress by triggering expression of several drought responsive genes including transcription factors which in turn trigger expression of various downstream signalling pathways and adaptive networks. Expression of such drought responsive genes may revert back to their original level upon re-watering. However, no reports are available on such phenomenon in Hevea and hence, this study was initiated. For this purpose, NAC transcription factor (NAC tf) was chosen as candidate gene. Its expression levels were monitored under intermittent drought as well as irrigated conditions in two clones (RRII 105 and RRIM 600) of H. brasiliensis with contrasting tolerance level. Copy number of NAC tf was found similar in both the clones. Expression of NAC tf was found highly up-regulated in RRIM 600 (a relatively drought tolerant clone) than in RRII 105 (a relatively drought susceptible clone) throughout the drought incidences which upon re-watering, reached back to its original levels in both the clones. The study indicated the existence of an association between expression of NAC tf and drought tolerance trait exhibited by the tolerant clone RRIM 600. The study also proves the influence of drought and re-watering on the leaf photosynthesis and expression of NAC tf in H. brasiliensis.