• Title, Summary, Keyword: Displacement Limit

Search Result 306, Processing Time 0.041 seconds

The Displacement Limit at the End of an Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도 부설 교량의 접속슬래브 단부 처짐한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab could be installed to prevent such a phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and increasing the track deteriorations by excessive impact force acting on the track. In this study, parametric studies were performed to investigate the displacement limit on the approach slab to avoid such problems. The length and the amount of unequal settlement of approach slab were adopted as parameter for numerical analysis considering vehicle-track interaction. Car body accelerations, variations of wheel force, stresses in rail, and uplift forces induced on fastener clip were investigated. From the result, resonable settlement limit on the end of an approach slab according to slab length was suggested.

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

A Consideration on Deformation Characteristics of Soil Nailed Retaining-Walls on Field Measurements (현장계측에 의한 쏘일네일링 보강벽체의 변형특성에 관한 고찰)

  • Yoon, Bae-Sic;Lee, Jong-Moon;Kang, In-Kyu;Kwon, Young-Ho;Kim, Hong-Taek
    • 한국방재학회:학술대회논문집
    • /
    • /
    • pp.534-537
    • /
    • 2007
  • The soil nailing was generally using method in practical business, in application of the soil nailing, the analysis was primarily used to Beam-Colum Method, Finite Element Method and Limit Equilibrium Method. Beam-Colum Method and Finite Element Method were able to examine transformation but widely using Limit Equilibrium Method wasn't able to examine transformation and displacement Therefore, this study was focused on presenting stability in comparison with former study-results about horizontal displacement of the soil nailing retaining-walls satisfing a criterion safety factor of Limit Equilibrium. There were performing comparison field measurements and former study-results in first step.

  • PDF

Elasto-plastic Analysis of Circular Cylindrical Shell under Horizontal Load by Rigid-bodies Spring Model

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • This paper is a study on the experiment and elasto-plastic discrete limit analysis of reinforced concrete circular cylindrical shell by the rigid-bodies spring model. In the rigid bodies-spring model, each collapsed part or piece of structures at the limiting state of loading is assumed to behave like rigid bodies. The present author propose new discrete elements for elasto-plastic analysis of cylindrical shell structures, that is, a rectangular-shaped cylindrical element and a rhombus-shaped cylindrical element for the improvement and expansion of this rigid-bodies spring model. In this study, it is proposed how this rigid element-bodies spring model can be applied to the elasto-plastic discrete limit analysis of cylindrical shell structures. Some numerical results of elasto-plastic discrete limit analysis and experimental results such as the curve of load-displacement and the yielding and fracturing pattern of circular cylindrical shell under horizontal load are shown.

  • PDF

Design Review of Inter-Modal Terminal Platform for Temperature Load (온도하중을 고려한 인터모달 터미널 플랫폼의 설계 검토)

  • Kim, Kyoung-Su;Kim, Da-Ae;Kim, Heung-Rae;Hyun, Eun-Tack
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.305-311
    • /
    • 2019
  • In this study, we examined the proper spacing between the expansion joints according to the temperature load of the inter-modal terminal platform infrastructure to implement a new inter-modal automated freight transport system, which we intend to introduce in Korea. To review the proper expansion joint spacing of the terminal platforms, we set the maximum expansion joint spacing according to the regional temperature changes using the equation proposed by the Federal Construction Council (FCC) of the United States. Then, the maximum displacement value, which was calculated through the structural analysis program, and the limit of the horizontal displacement of the building structure were compared. The proper expansion joint spacing was selected as the slab length at which the maximum displacement of the structure, due to temperature changes, was below the horizontal displacement limit. Based on the application of maximum expansion joint spacing for each region calculated through the FCC's suggestion, the maximum displacement that could occur within the limit of the lateral displacement of the structure was determined.

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.

Estimation of Mobilized Passive Earth Pressure Depending on Wall Movement in Sand (모래지반에서 벽체의 변위에 따른 수동측토압 산정)

  • Kim, Tae-O;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.51-60
    • /
    • 2020
  • Estimation of passive earth pressure is an important factor in anchor block, temporary retaining wall and support block of raker that resist lateral earth pressure. In practice, due to ease of use, it is common to estimate the earth pressure using the theory of Coulomb and Rankine, which assumes the failure plane as a straight line. However, the passive failure plane generated by friction between the wall surface and the soil forms a complex failure plane: a curve near the wall and a flat plane near the ground surface. In addition, the limit displacement where passive earth pressure is generated is larger compared to where the active earth pressure is generated. Thus, it is essential to calculate the passive earth pressure that occurs at the allowable displacement range in order to apply the passive earth pressure to the design for structural stability reasons. This study analyzed the mobilized passive earth pressured to various displacement ranges within the passive limit displacement range using the semi-empirical method considering the complex failure plane.

Influence of Room Temperature and Strain Aging on the COD for a Small Fatigue Crack (室溫時效 및 變形時效가 微小 疲勞크랙의 開口變位에 미치는 影響)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.402-407
    • /
    • 1995
  • The effects of room temperature and strain aging treatment are discussed on the critical condition for the onset of growth of non-propagating cracks on 0.15% C low carbon steel, with special emphasis on the length of the critical non-propagating crack and on the crack opening displacement(COD) at the crack tip. It is found from the experimental analysis that room temperature and strain aging of a fatigue pre-cracked specimen introduced the closure of a crack tip of the pre-crack and the reduction of crack opening displacement at the wake of crack, together with an improvement in crack growth resistance of the microstructure. This may cause an increase in the endurance limit of the specimen, through the enhancement of effective stress for the onset of growth of the critical non-propagating crack.

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Performance limit of digital vibrometer using self-mixing type LDV

  • Shinohara, Shigenobu;Hara, Katsuhiko;Toyoshima, Morio;Ikeda, Hiroaki;Yoshida, Hirofumi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.170-173
    • /
    • 1995
  • Recently, we proposed a compact digital vibrometer using a self-mixing laser Doppler velocimeter (SM-LDV). In this paper, we theoretically obtained formulas giving lower and upper limit of measurable velocity. In the prototype digital vibrometer, the theoretical value was 6.7mm/s and 162.8mm/s, respectively, which agreed well with the measured value. The upper limit of measurable displacement amplitude was 12OO.mu.m at 10Hz, and 250.mu.m at 100Hz. Furthermore, the measurement accuracy the displacement amplitude was within -3% and average error -1.3%, when the shape of the sawtooth contained in the Doppler beat signal is clear and sharp. The measurement accuracy is found to depend on a degree of sawtooth asymmetry (DSA).

  • PDF