• Title/Summary/Keyword: Disinfection By-Products (DBPs)

Search Result 50, Processing Time 0.083 seconds

Decomposition of Microcystis sp. Cell and Formation of Chlorination Disinfection By-Products (Microcystis sp. Cell의 부패와 염소 소독부산물 생성)

  • Son, Hee-Jong;Yeom, Hoon-Sik;Jung, Jong-Mun;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.351-358
    • /
    • 2012
  • Formation of disinfection by-products (DBPs) including trihalomethans (THM), haloacetic acid (HAA) and haloacetonitriles (HAN) from chlorination of extracellular organic matter (EOM) and cells + intracellular organic matter (IOM) of Microcystis sp., a blue-green algae, during decomposed period was investigated. Microcystis sp. cells + IOM and EOM of Microcystis sp. exhibited a high potential for DBP formation. HAAFP (formation potential) was higher than THMFP during decomposed period. In the variations of HAAFP species during decomposed period, the ratio of di-HAAFP species was gradually decreased and the ratio of tri-HAAFP species was gradually increased in the case of EOM during decomposed period, while the opposite result was in the case of cells + IOM during decomposed period. In the variations of HANFP species during decomposed period, the ratio of di-HANFP species was much higher than the ratio of tri-HAAFP species.

Formation of Disinfection By-Products from Blue-green Algae by Chlorination (남조류의 염소처리에 따른 미량의 염소 소독부산물 생성에 관한 연구)

  • Son, Hee-Jong;Jung, Jong-Moon;Yeom, Hoon-Sik;Choi, Jin-Taek;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.1015-1021
    • /
    • 2012
  • Formation of disinfection by-products (DBPs) including trihalomethans (THMs), haloacetic acid (HAAs), haloacetonitriles (HANs) and others from chlorination of algogenic organic matter (AOM) of Microcystis sp., a blue-green algae. AOM of Microcystis sp. exhibited a high potential for DBPs formation. HAAs formation potential was higher than THMs and HANs formation potential. The percentages of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) formation potential were 43.4% and 51.4% in the total HAAs formation potential. In the case of HANs formation potential, percentage of dichloroacetonitrile (DCAN) formation potential was 97.7%. Other DBPs were aldehydes and nitriles such as acetaldehyde, methylene chloride, isobutyronitrile, cyclobutanecarbonitrile, pentanenitrile, benzaldehyde, propanal, 2-methyl, benzyl chloride, (2-chloroethyl)-benzene, benzyl nitrile, 2-probenenitrile and hexanal.

Removal of NOM in a Coagulation Process Enhanced by Modified Clay (개질 Clay를 첨가한 응집공정에서의 자연유기물 제거)

  • Park, Ji-Hye;Lee, Sang-Yoon;Park, Hung-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

Characteristics of Disinfection By-Products Formation in Korea (국내 정수장의 소독부산물 생성 특성)

  • Kim, Jinkeun;Jeong, Sanggi;Shin, Changsoo;Cho, Hyukjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.301-311
    • /
    • 2005
  • The characteristics of disinfection by-products (DBPs) formation at 28 water treatment plants in Korea were investigated. Investigated species of DBPs were trihalomethanes (THMs), haloacetic acids (HAAs) and chloral hydrate (CH). The maximum concentration of THMs was $84.1{\mu}g/L$, minimum and the averages were $6.9{\mu}g/L$ and $27.8{\mu}g/L$, respectively; the maximum concentration of $HAA_5$ was $90.8{\mu}g/L$, minimum and the averages were $3.8{\mu}g/L$ and $26.7{\mu}g/L$, respectively; while the maximum concentration of CH was $29.5{\mu}g/L$, minimum and the averages were $0.5{\mu}g/L$ and $7.4{\mu}g/L$, respectively. On the other hand, DBPs levels during summer months, when the water temperature was near $25^{\circ}C$, were nearly twice as great as DBPs levels during the winter season. The ratio of $THMs/HAA_5$ was 1.07, and $HAA_5$ and THMs were the dominant species of DBPS in the Kum-Sumjin river and Nakdong river, respectivley.

The Effect of Physical Chemistry Factors on Formation of Disinfection by-products (소독부산물 생성에 미치는 물리화학적인 인자 영향)

  • Chung Yong;Kim Jun-Sung
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.965-972
    • /
    • 2005
  • This research studied the effect of factors that are able to form disinfection by-products (DBPs) of chlorination, including natural organic matter (NOM) with sewage, bromide ions, pH and contact time. Trihalomethane (THMs) yield of $0.95{\mu}mol/mg$ was higher than other DBPs yield for the chlorinated humic acid samples. THMs yield of sewage sample was $0.14{\mu}mol/mg$ and haloacetonitriles (HANs) yield in the sewage samples were $0.13{\mu}mol/mg$ but only $0.02{\mu}mol/mg$ for the humic acid samples. As the concentration of bromide ions increased, brominated DBPs increased while chlorinated DBPs decreased, because bromide ions produce brominated DBPs. THMs were highest $(55.55{\mu}g/L)$ at a pH of 7.9 and haloacetic acids (HAAs) were highest $(34.98{\mu}g/L)$ at a pH of 5. Also THMs increased with increasing pH while HAAs decreased with increasing pH. After chlorination, the rate of THMs and HAA formation are faster at initial contact time and then reaches a nearly constant value after 24 hours. This study considers ways to reduce DBP formation by chlorination.

Characteristics of Formation of Chlorination Disinfection By-Products in Extracellular Organic Matter of Various Algal Species (다양한 조류종들의 세포외 유기물질에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Park, Hong-Ki;Hwang, Young-Do;Jung, Jong-Moon;Kim, Sang-Goo
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.541-547
    • /
    • 2015
  • Formation of disinfection by-products (DBPs) including trihalomethans (THMs) and haloacetic acids (HAAs) from chlorination of six different species (Chlorella vulgaris, Scenedesmus sp., Anabaena cylindrical, Microcystis aeruginosa, Asterionella formosa and Aulacoseira sp.) of algal extracellular organic matter (EOM). The EOM characteristics evaluation of six algal species reaching at the stationary phase in the growth curve showed most of its SUVA254 showed below 1 and this means hydrophilic organic matter is much higher than hydrophobic organic matter. Chloroform formation potential (CFFP), dichloroacetic acid formation potential (DCAAFP) and trichloroacetic acid formation potential (TCAAFP) were mainly composed of THMFP and HAAFP in the EOM of various algal species. In the case of THMFP/DOC and HAAFP/DOC values, EOM of blue-green algae has appeared highest and EOM of green algae and diatom in order. THMFP/DOC was higher than HAAFP/DOC in EOM of blue-green algae. In comparison of formation potential by unit DOC composed of HAAFP in algal species EOM, DCAAFP/DOC was 1.5 times to 7.5 time higher than TCAAFP/DOC in the EOM of blue-green algae, while DCAAFP/DOC was found to be relatively high compared to TCAAFP/DOC in the EOM of green algae and diatom.

Speciation of THMs, HAAs (THMs, HAAs의 종분포)

  • Kim, Jin-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1135-1140
    • /
    • 2006
  • Concentration and speciation of trihalomethanes(THMs) and haloacetic acids(HAAs) that can be created during chlorine disinfection as disinfection by-products(DBPs) in Korean water treatment plants(WTPs) were investigated. 4 WTPs that adopted conventional water treatment processes were chosen for investigation and each represented a typical WTP on the Han, Keum, Sumjin and Nakdong Rivers. The average concentration of THMs was 26.9 ppb, and the maximum and minimum concentrations were 47.6 ppb and 11.0 ppb respectively, while the average concentration of HAAs was 25.4 ppb, and the maximum and minimum concentrations were 57.1 ppb and 9.7 ppb respectively. DBPs concentration was lower in the winter than the summer. The major species of THMs was chloroform and its average percentage was 77%, and the second highest was bromodichloromethane(20%), while the concentration of bromoform was below detection limits. The sum of dichloroacetic acid(DCAA) and trichloroacetic acid(TCAA) was 97% of $HAA_5 $ on average base. But its percentage was 90% in the Han River WTP, especially it was the lowest during the winter. On the other hand, the concentration of DCAA was higher than TCAA except during the summer.

Evaluation of Natural Organic Matter Treatability and Disinfection By-Products Formation Potential using Model Compounds (정수처리 공정에서 모델 물질들을 이용한 천연유기물질 처리능 및 소독부산물 생성능 평가)

  • Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Son, Hyung-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1153-1160
    • /
    • 2013
  • While a range of natural organic matter (NOM) types can generate high levels of disinfection by-products (DBPs) after chlorination, there is little understanding of which specific compounds act as precursors. Use of eight model compounds allows linking of explicit properties to treatability and DBP formation potential (DBPFP). The removal of model compounds by various treatment processes and their haloacetic acid formation potential (HAAFP) before and after treatment were recorded. The model compounds comprised a range of hydrophobic (HPO) and hydrophilic (HPI) neutral and anionic compounds. On the treatment processes, an ozone oxidation process was moderate for control of model compounds, while the HPO-neutral compound was most treatable with activated carbon process. Biodegradation was successful in removing amino acids, while coagulation and ion exchange process had little effect on neutral molecules. Although compared with the HPO compounds the HPI compounds had low HAAFP the ozone oxidation and biodegradation were capable of increasing their HAAFP. In situations where neutral or HPI molecules have high DBPFP additional treatments may be required to remove recalcitrant NOM and control DBPs.

Assessment of Inhalation Exposure to Volatile Disinfection By-products Associated with Household Uses of Chlorinated Tap Water (가정에서의 수돗물 사용과 관련된 휘발성 염소소독부산물에 대한 흡입노출 평가)

  • 김희갑;김문숙;윤지현
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 2002
  • Volatile disinfection by-products (DBPs) contained in chlorinated tap water are released into household air during indoor activities (showering, cooking, dish -washing, etc.) associated with tap water uses and may cause adverse health effects on humans. Twenty seven subjects were recruited and their homes were visited during the winter of 2002. Tap water, household air, and exhaled breath samples were collected and analyzed for five volatile DBPs (chloroform, bromodichloromethane, dichloroacetonitrile, 1,1 -dichloropropanone and 1,1,1 trichloropropanone). Chloroform was a major DBP found in most samples. Tap water chloroform concentrations were not statistically correlated with its household air concentrations, probably due to individual variability in indoor activities such as showering, cooking, and dish - washing as well as household ventilation. Correlation of breath chloroform concentration with household air chloroform concentration showed its possible use as a biomarker of exposure to household air chloroform. Exposure estimates suggested that inhalation during household stay be a major route of exposure to volatile DBPs and that ingestion of tap water be a trivial contributor to the total exposure in Koreans.

A Study on the Characteristics of Natural Organic Matter and Disinfection By-Product Formation in the Juam Reservoir

  • Shin, Dae-Yewn;Moon, Ok-Ran;Yoon, Mi-Ran;Kim, Nam-Joung;Kang, Gang-Unn;Seo, Gwang-Yeob
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • /
    • pp.259-262
    • /
    • 2005
  • This study aims to identify the relationship between characteristics of aqueous organic matter and chlorination by-products formation potential according to temporal effect of Juam reservoir in Sun-Choen. The molecular weight distribution and chemical composition of precursors and their relationship with disinfection by-products(DBPs) were investigated. Most of the organic matters was responsible for the major DBP precursors in the raw water are small compounds with a molecular weight less than IKDa, Aromatic contents determined by SUVA correlated well with DBPs, THMs, and HAAs formation. Especially, THMFP/DOC showed better correlation with SUVA than HAAFP/DOC and DBPFP/DOC with SUVA in Juam reservoir. Therefore, effective removal of small molecules or hydrophobic organic matter prior to disinfection process will significantly reduce the DBP concentration in the finished water.

  • PDF