• Title, Summary, Keyword: Derris scandens benth

Search Result 2, Processing Time 0.022 seconds

Ethanolic Extract from Derris scandens Benth Mediates Radiosensitzation via Two Distinct Modes of Cell Death in Human Colon Cancer HT-29 Cells

  • Hematulin, Arunee;Ingkaninan, Kornkanok;Limpeanchob, Nanteetip;Sagan, Daniel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1871-1877
    • /
    • 2014
  • Enhancing of radioresponsiveness of tumors by using radiosensitizers is a promising approach to increase the efficacy of radiation therapy. Recently, the ethanolic extract of the medicinal plant, Derris scandens Benth has been identified as a potent radiosensitizer of human colon cancer HT29 cells. However, cell death mechanisms underlying radiosensitization activity of D scandens extract have not been identified. Here, we show that treatment of HT-29 cells with D scandens extract in combination with gamma irradiation synergistically sensitizes HT-29 cells to cell lethality by apoptosis and mitotic catastrophe. Furthermore, the extract was found to decrease Erk1/2 activation. These findings suggest that D scandens extract mediates radiosensitization via at least two distinct modes of cell death and silences pro-survival signaling in HT-29 cells.

Derris scandens Benth Extract Potentiates Radioresistance of Hep-2 Laryngeal Cancer Cells

  • Hematulin, Arunee;Meethang, Sutiwan;Ingkaninan, Kornkanok;Sagan, Daniel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1289-1295
    • /
    • 2012
  • The use of herbal products as radiosensitizers is a promising approach to increase the efficacy of radiotherapy. However, adverse effects related to the use of herbal medicine on radiotherapy are not well characterized. The present study concerns the impact of Derris scandens Benth extract on the radiosensitivity of Hep-2 laryngeal cancer cells. Pretreatment with D. scandens extract prior to gamma irradiation significantly increased clonogenic survival and decreased the proportion of radiation-induced abnormal nuclei of Hep-2 cells. Furthermore, the extract was found to enhance radiation-induced G2/M phase arrest, induce Akt activation, and increase motility of Hep-2 cells. The study thus indicated that D. scandens extract potentiates radioresistance of Hep-2 cells, further demonstrating the importance of cellular background for the adverse effect of D. scandens extract on radiation response in a laryngeal cancer cell line.