• Title, Summary, Keyword: Deposition Process

Search Result 2,523, Processing Time 0.049 seconds

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Reduction of Plasma Process Induced Damage during HDP IMD Deposition

  • Kim, Sang-Yung;Lee, Woo-Sun;Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.14-17
    • /
    • 2002
  • The HDP (High Density Plasma) CVD process consists of a simultaneous sputter etch and chemical vapor deposition. As CMOS process continues to scale down to sub- quarter micron technology, HDP process has been widely used fur the gap-fill of small geometry metal spacing in inter-metal dielectric process. However, HBP CVD system has some potential problems including plasma-induced damage. Plasma-induced gate oxide damage has been an increasingly important issue for integrated circuit process technology. In this paper, thin gate oxide charge damage caused by HDP deposition of inter-metal dielectric was studied. Multiple step HDP deposition process was demonstrated in this work to prevent plasma-induced damage by introducing an in-situ top SiH$_4$ unbiased liner deposition before conventional deposition.

The Influence of Parameters Controlling Beam Position On-Sample During Deposition Patterning Process with Focused Ion Beam (빔 위치 관련 제어인자가 집속이온빔 패턴 증착공정에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • The application of focused ion beam (FIB) depends on the optimal interaction of the operation parameters between operating parameters which control beam and samples on the stage during the FIB deposition process. This deposition process was investigated systematically in C precursor gas. Under the fine beam conditions (30kV, 40nm beam size, etc), the effect of considered process parameters - dwell time, beam overlap, incident beam angle to tilted surface, minimum frame time and pattern size were investigated from deposition results by the design of experiment. For the process analysis, influence of the parameters on FIB-CVD process was examined with respect to dimensions and constructed shapes of single and multi- patterns. Throughout the single patterning process, optimal conditions were selected. Multi-patterning deposition were presented to show the effect of on-stage parameters. The analysis have provided the sequent beam scan method and the aspect-ratio had the most significant influence for the multi-patterning deposition in the FIB processing. The bitmapped scan method was more efficient than the one-by-one scan type method for obtaining high aspect-ratio (Width/Height > 1) patterns.

Modeling of Deposition Height in the Uncontrolled Laser Aided Direct Metal Deposition Process (비 제어 상태의 레이저 직접 금속성형공정에서 적층높이의 모델링)

  • Chang, Yoon-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • Models of the deposition heights in the uncontrolled laser aided direct metal deposition process are constructed for the enhancement of the process integrity. Linear and non-linear statistical models as well as fuzzy model are utilized as the modeling methods. The predictability of the models are evaluated with the values of the sum of square error. The algorithm to use the models in the feedback controlled system is suggested to increase the deposition height accuracy within a layer.

  • PDF

Particle Deposition, PD Process - New Potential in Material Processing -

  • Fukumoto, Masahiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • /
    • pp.47-48
    • /
    • 2006
  • Oridinal thermal spray process has developed into two ways, namely, temperature dominated represented by plasma spraying, and velocity dominated represented by HVOF. It is common for both that the particle materials sprayed are basically in melted or half melted condition. New process has developed recently, that is, Cold Spray and Aerosol Deposition. Particle's heating is limited in CS lower than half of the material's melting point. Moreover, exactly no heating is loaded in AD process. Through the investigation on common feature for these three spraying processes, potential of new material process - Particle Deposition, PD - is considered and proposed.

  • PDF

Manipulation of Perpendicular Anisotropy in FePt Patterned Media for Ultra-high Density Magnetic Recording

  • Kim, Hyun-Su;Noh, Jin-Seo;Roh, Jong-Wook;Chun, Dong-Won;Kim, Sung-Man;Jung, Sang-Hyun;Kang, Ho-Kwan;Jeung, Won-Yong;Lee, Woo-Young
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • /
    • pp.70-71
    • /
    • 2010
  • In this study, We fabricated FePt-based perpendicular patterned media using a selective combination of E-beam lithography and either Ar plasma etching (deposition-first process) or FePt lift-off (deposition-last process). We employed the deposition-last process to avoid chemical and structural disordering by impinging Ar ions (deposition-first process). For a patterned medium with 100 nm patterns made by this process, the out-of-plane coercivity was measured to be 5 fold larger than its in-plane value. The deposition-last process may be a promising way to achieve ultra-high density patterned media.

  • PDF

The performance of large-area organic solar cells by spray deposition process

  • Park, Seon-Yeong;Park, Dong-Seok;Kim, Do-Geun;Kim, Jong-Guk;Kim, Ju-Hyeon;Gang, Jae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.291-291
    • /
    • 2010
  • Organic solar cells have attracted much interest due to the potential advantage of the lightness, simple solution processing and flexibility. Until recently, the focus of organic solar cells research has been on optimization of material processing to improve the power conversion efficiency. However, area scaling is an important position for alternative to the market dominating solar cells. Spray deposition technologies have advantage of less material wastage and possibility of large scale photoactive area coating when compared with spin coating process. We investigated the performance of organic solar cells as a function of active area using two types of deposition process. The commonly used process is spin coating which can be fabricated organic materials deposition for devices. Spray deposition process compare with spin coating for large-area organic solar cells. The spray deposition organic layer shows excellent performance up to the active area of $4\;cm^2$ with the PCE of ~3.0 % under AM.1.5 simulated illumination with an intensity of $100mW/cm^2$. This indicates that the spray deposition process can be used as a mass production process for evaluating large-area organic solar cells.

  • PDF

Influence of Process Condition on Contact Resistance in WSix Deposition (WSix 증착에서 공정조건이 contact 저항에 미치는 영향)

  • 정양희;강성준;강희순
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.279-282
    • /
    • 2002
  • In this paper, we discuss influence of process condition on contact resistance in WSix deposition process. In the WSix deposition process, we confirmed that word line to bit line contact resistance(WBCR) due to temperature of word line WSix deposition among various process condition split experiment. RTP treatment, d-poly ion implantation dose and thickness was estimated a little bit influence on contact resistance. Also, life time of shower head in the process chamber for WSix deposition related to contact resistance. The results obtained in this study are applicable to process control and electrical characteristics for high reliability and high density DRAM's.

  • PDF

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

HIGH-THROUGHPUT PROCESS FOR ATOMIC LAYER DEPOSITION

  • Shin, Woong-Chul;Choi, Kyu-Jeong;Baek, Min;Kim, Mi-Ry
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • /
    • pp.23.2-23.2
    • /
    • 2009
  • Atomic layer deposition (ALD)have been proven to be a very attractive technique for the fabrication of advanced gate dielectrics and DRAM insulators due to excellent conformality and precise control of film thickness and composition, However, one major disadvantages of ALD is its relatively low deposition rate (throughput) because the deposition rate is typically limited by the time required for purging process between the introduction of precursors. In order to improve its throughput, many efforts have been made by commercial companies, for example,the modification reactor and development of precursors. However, any promising solution has not reported to date. We developed a new concept ALD system(Lucida TM S200) with high-throughput. In this process, a continuous flow of ALD precursor and purging gas are simultaneously introduced from different locations in the ALD reactor. A cyclic ALD process is carried out by moving the wafer holder up and down. Therefore, the time required for ALD reaction cycle is determined by speed of the wafer holder and vapor pressure of precursors. We will present the operating principle of our system and results of deposition.

  • PDF