• Title, Summary, Keyword: Deposition Equipment

Search Result 158, Processing Time 0.069 seconds

OLED display manufacturing by Organic Vapor Phase Deposition

  • Marheineke, B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.1676-1681
    • /
    • 2006
  • We report on Organic Vapor Phase Deposition $(OVPD^{(R)})$ an innovative deposition technology for organic light emitting device (OLED) and organic semiconductor manufacturing. The combination of $OVPD^{(R)}$ with Close Coupled Showerhead (CCS) technology results in manufacturing equipment with vast potential for cost effective manufacturing of OLED displays commercially competitive to LCD. The actual $OVPD^{(R)}$ equipment concept and design is discussed: Computational Fluid Dynamic (CFD) modeling is compared with experimental results proving the excellent controllability of the deposition process. Further other production relevant deposition properties are being reviewed e.g. high deposition rates and high organic material utilization efficiency of the $OVPD^{(R)}$ - Technology. Data from devices made by $OVPD^{(R)}$ show comparable/ superior performance to those fabricated with conventional vacuum thermal evaporation (VTE) techniques. An outlook on further potentials of $OVPD^{(R)}$ with respect to enabling advanced organic device structures is given.

  • PDF

Deposition Process Load Balancing Analysis through Improved Sequence Control using the Internet of Things (사물인터넷을 이용한 증착 공정의 개선된 순서제어의 부하 균등의 해석)

  • Jo, Sung-Euy;Kim, Jeong-Ho;Yang, Jung-Mo
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.323-331
    • /
    • 2017
  • In this paper, four types of deposition control processes such as temperature, pressure, input/output(I/O), and gas were replaced by the Internet of Things(IoT) to analyze the data load and sequence procedure before and after the application of it. Through this analysis, we designed the load balancing in the sensing area of the deposition process by creating the sequence diagram of the deposition process. In order to do this, we were modeling of the sensor I/O according to the arrival process and derived the result of measuring the load of CPU and memory. As a result, it was confirmed that the reliability on the deposition processes were improved through performing some functions of the equipment controllers by the IoT. As confirmed through this paper, by applying the IoT to the deposition process, it is expected that the stability of the equipment will be improved by minimizing the load on the equipment controller even when the equipment is expanded.

Material and Structure Optimization of Substrate Support for Improving CVD Equipment Up Time (CVD 장비 Up Time 향상을 위한 기판 지지대의 재질 및 구조 최적화)

  • Woo, Ram;Kim, Won Kyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.670-676
    • /
    • 2019
  • We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.

Atomic Layer Deposition of TiO2 using Titanium Isopropoxide and H2O: Operational Principle of Equipment and Parameter Setting

  • Cho, Karam;Park, Jung-Dong;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.346-351
    • /
    • 2016
  • Titanium dioxide ($TiO_2$) films are deposited by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. The operating instructions for the ALD equipment are described in detail, along with the settings for relevant parameters. The thickness of the $TiO_2$ film is measured, and thereby, the deposition rate is quantitatively estimated to verify the linearity of the deposition rate.

Improving current and luminous efficacy of red phosphorescent Organic Light Emitting Diodes (OLEDs) by introducing graded-layer device designs enabled by Organic Vapor Phase Deposition (OVPD)

  • Schwambera, Markus;Keiper, Dietmar;Meyer, Nico;Heuken, Michael;Lindla, Florian;Bosing, Manuel;Zimmermann, Christoph;Jessen, Frank;Kalisch, Holger;Jansen, Rolf H.;Gemmern, Philipp Van;Bertram, Dietrich
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.1140-1143
    • /
    • 2009
  • Organic Vapor Phase Deposition (OVPD) equipment enables the accurate and simultaneous control of deposition rates of multiple materials as well as their homogenous mixing in the gas phase. Graded or even cross-faded layers by varying carrier gas flow are options to improve OLED performances. As example, we will show how the efficacies of standard red phosphorescent OLEDs with sharp interfaces can be increased from 18.8 cd/A and 14.1 lm/W (1,000 cd/$m^2$) to 36.5 cd/A (+94 %, 18 % EQE) and 33.7 lm/W (+139 %) by the introduction of cross-fading, which is a controlled composition variation in the organic film.

  • PDF

Showerhead Surface Temperature Monitoring Method of PE-CVD Equipment (PE-CVD 장비의 샤워헤드 표면 온도 모니터링 방법)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.16-21
    • /
    • 2020
  • How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.

  • PDF

Neural Network Time Series Modeling of Sensor Information of Plasma Deposition Equipment (플라즈마 증착 장비 센서 정보의 신경망 시계열 모델링)

  • Kim, You-Seok;Kim, Byung-Whan;Kwon, Gi-Chung;Han, Jeong-Hoon;Shon, Jong-Won
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.102-104
    • /
    • 2006
  • Auto-Correlated time series (ATS) model was constructed by using the backpropagation neural network. The performance of ATS model was evaluated with sensor information collected from a large volume, industrial plasma-enhanced chemical vapor deposition system. A total of 18 sensor information were collected. The effect of inclusion of past and future information were examined. For all but three sensor information with a large data variance demonstrated a prediction error less than 4%. By integrating ATS model into equipment software, process quality can be more stringently monitored while improving device throughput.

  • PDF

Enhanced Control of OLED Deposition Processes by OVPD(R)

  • Schwambera, M.;Meyer, N.;Keiper, D.;Heuken, M.;Hartmann, S.;Kowalsky, W.;Farahzadi, A.;Niyamakom, P.;Beigmohamadi, M.;Wuttig, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.336-339
    • /
    • 2007
  • The enhanced control of OLED deposition processes by Organic Vapor Phase Deposition $(OVPD^{(R)})$ is discussed. $OVPD^{(R)}$ opens a wide space of process control parameters. It allows the accurate and individual control of deposition layer properties like morphology and precise mixing of multi component layers (co-deposition) in comparison to conventional deposition manufacturing processes like e. g. VTE (vacuum thermal evaporation).

  • PDF

Resistance Switching Enhancement in Multi-step Deposition by Multi-deposition and Multi-anneal

  • Kim KyongRae;Ko Han-kyoung;Lee Taeho;Park In-Sung;Ahn Jinho
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • /
    • pp.151-154
    • /
    • 2005
  • In this paper, we present the enhanced performance of resistive RAM devices with multi-step deposited and annealed oxides. By using multi-step deposition and low temperature multi-step annealins, forming-free Re-RAM is achieved with lower operation voltages and larger resistive ratio than those of conventional Re-RAM with typical single deposited oxide.

  • PDF

Ink Jets as Display Manufacturing Tools

  • Schoeppler, Martin.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.1719-1721
    • /
    • 2007
  • Major display equipment suppliers have introduced equipment using ink jets for manufacturing steps such as printing the polyimide alignment layer and printing color filters. This paper will discuss the status of ink jets as precision deposition tools and the new technology being introduced for ink jet manufacturing.

  • PDF