• Title, Summary, Keyword: Deep submicron lithography

Search Result 6, Processing Time 0.042 seconds

Development parameter measurement and profile analysis of electron beam resist for lithography simulation (리소그라피 모의실험을 위한 전자빔용 감광막의 현상 변수 측정과 프로파일 분석)

  • 함영묵;이창범;서태원;전국진;조광섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.198-204
    • /
    • 1996
  • Electron beam lithography is one of the importnat technologies which can delineate deep submicron patterns. REcently, electron beam lithography is being applied in delineating the critical layers of semiconductor device fabrication. In this paper, we present a development simulation program for electron beam lithography and study the development profiles of resist when resist is exposed by the electron beam. Experimentally, the development parameter of positive and negative resists are measured and the data is applied to input parameter of the simulation program. Also simulation results are compared of the process results in the view of resist profiles. As a result, for PMMA and SAL 601 resist, the trend of simulation to the values of process parameters agree with real process results very well, so that the process results can be predicted by the simulation.

  • PDF

Modified Illumination with a Concentric Circular Grating at the Backside of a Photomask (마스크 뒷면에 동심원 격자를 사용한 변형조명 방법)

  • Oh, Yong-Ho;Go, Chun-Soo;Lim, Sungwoo;Lee, Jai-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.212-215
    • /
    • 2005
  • Modified illumination techniques have been used to enhance the resolution of the sub-wavelength lithography. But, since they shield the central part of incident light, the light efficiency is seriously degraded, which in turn reduces the throughput of a lithography process. In this research, we introduced an annular illumination structure that enhances the light efficiency with a concentric circular grating at the backside of a photomask. The efficiency of the structure was theoretically analyzed.

Submicron Patterning in Electron Beam Lithography using Trilayer Resist (삼층감광막구조를 이용한 미세패턴의 전자빔 묘화)

  • 배용철;서태원;전국진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.101-107
    • /
    • 1994
  • The PMMA/Ge/AZ trilayer resist decreased proximity effect of backscattering electrons and corrected pattern distoration in order to from deep submicron patterns. In the experiment, the prosiemity effect is decreased by 11% and 30% for the case of 0.9$\mu$m and 1.7$\mu$m AZ, respectively, in trilayer resist compared to monolyer resist. also, the EID of 240$\AA$ Ge film is smaller than that of 500$\AA$ film by 365. 0.1$\mu$m line/space was formed in the 2000$\AA$ PMMA layer with the condition of dose 330${\mu}C/cm^{2}$ and of 150sec of develop time in MIBK : IPA (1:3) developer.

  • PDF

Modified Illumination by Binary Phase Diffractive Patterns on the Backside of a Photomask (마스크 뒷면에 2 위상 회절 격자를 구현한 변형 조명 방법)

  • 이재철;오용호;고춘수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.697-700
    • /
    • 2004
  • We propose a method that realizes the modified illumination by implementing a binary phase grating at the backside of a photomask. By modeling the relationship between the shape of a grating on the photomask and the light intensity at the pupil plane, we developed a program named MIDAS that finds the optimum grating pattern with a stochastic approach. After applying the program to several examples, we found that the program finds the grating pattern for the modified illumination that we want. By applying the grating at the backside of a photomask, the light efficiency of modified illumination may be improved.

전자선 직접묘사에 의한 Deep Submicron NMOSFET 제작 및 특성

  • Lee, Jin-Ho;Kim, Cheon-Soo;Lee, Heyung-Sub;Jeon, Young-Jin;Kim, Dae-Yong
    • ETRI Journal
    • /
    • v.14 no.1
    • /
    • pp.52-65
    • /
    • 1992
  • 전자선 직접묘사 (E-beam direct writing lithography) 방법을 이용하여 $0.2\mum$$0.3\mum$ 의 게이트길이를 가지는 NMOS 트랜지스터를 제작하였다. 게이트만 전자선 직접묘사 방법으로 정의하고 나머지는 optical stepper를 이용하는 Mix & Match 방식을 사용하였다. 게이트산화막의 두께는 최소 6nm까지 성장시켰으며, 트랜지스터구조로서는 lightly-doped drain(LDD) 구조를 채택하였다. 짧은 채널효과 및 punch through를 줄이기 위한 방안으로 채널에 깊이 붕소이온을 주입하는 방법과 well을 고농도로 도핑하는 방법 및 소스와 드레인에 $p^-$halo를 이온주입하는 enhanced lightly-doped drain(ELDD) 방법을 적용하였으며, 제작후 성능을 각각 비교하였다. 제작된 $0.2\mum$의 게이트길이를 가지는 소자에서는 문턱전압과 subthreshold기울기는 각각 0.69V 및 88mV/dec. 이었으며, Vds=3.3V에서 측정한 포화 transconductance와 포화 드레인전류는 각각 200mS/mm, 0.6mA/$\mum$이었다. $0.3\mum$소자에서는 문턱전압과 subthreshold 기울기는 각각 0.72V 및 82mV/dec. 이었으며, Vds=3.3V에서 측정한 포화 transconductance는 184mS/mm이었다. 이러한 결과는 전원전압이 3.3V일 때 실제 ULSI에 적용가능함을 알 수 있다.

  • PDF

Deep UV 마이크로 리소그라피를 위한 새로운 4-반사경 광학계에 관한 수차해석

  • 김종태;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • A design of four-mirror optical system with reduction magnification 5X for deep UV ($\lambda$=248 nm of KrF excimer laser) submicron lithography is presented. Initially by using the paraxial quantities, the domain of solution for $t=d_1+d_2+d_3$<0 (d;: distance between the mirror $c_i$ and $c_{i+1}$ is found for the system which is free from the four off-axial Seidel first order aberrations that are coma, astigmatism, field curvature, and distortion. The solution with $d_5$=2.95 (normalized with respect to $c_i$= -1) is choosen and the aspherization is carried out to the spherical mirror surfaces ($c_3$ and $c_4$ in order to reduce the axial and residual off-axial higher order aberrations. The numerical aperture of the final system is as large as 0.4, which gives Rayleigh resolution of 0.38 $\mu\textrm{m}$.

  • PDF