• Title, Summary, Keyword: Damper

Search Result 2,174, Processing Time 0.043 seconds

Performance Characteristics of Seat Damper Using MR Fluid (MR 유체를 이용한 운전석 댐퍼의 성능특성)

  • 남무호
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.127-134
    • /
    • 2000
  • This paper presents the development of a semi-active seat damper using MR fluids and the performance analysis of seat suspension system with a MR seat damper. An annular orifice type MR seat damper is proposed for a seat suspension of a commercial vehicle. After formulating the governing equation of motion, then an appropriate size of the seat damper is designed and manufactured. Following the evaluation of field-dependant damping force characteristics, the controllability of the damping force is experimentally demonstrated in time domain by adopting PID controller. A semi-active seat suspension with the proposed MR damper is constructed and its dynamic model is established. Subsequently, vibration control capability of the semi-active suspension system is investigated by employing the sky-hook controller.

  • PDF

Performance Evaluation of a Semi-Active ER Damper with Free Piston and Spring (부동피스톤과 스프링을 갖는 반능동 ER댐퍼의 성능평가)

  • Choe, Seung-Bok;Kim, Wan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3
    • /
    • pp.691-700
    • /
    • 2000
  • This paper presents a novel type of a semiactive damper featuring an electro-rheological(ER) fluid. Unlike conventional cylindrical ER damper, the proposed one has controllable orifices by the intensity of electric fields (We call it orifice type). The dynamic model of the orifice type ER damper is formulated by incorporating field-dependent Bingham properties of an arabic gum-based ER fluid. Design parameters such as electrode gap are subsequently determined on the basis of the dynamic model. After manufacturing the orifice type ER damper, field-dependent damping forces and damping force controllability are empirically evaluated. In the evaluation procedure, conventional cylindrical ER damper is adopted and its performance characteristics are compared with those of the orifice type ER damper. In addition, the proposed one is installed with a full-car model and its vibration control performance associated with a skyhook controller is investigated.

Vibration Suppression Using Eddy Current Damper (와전류 감쇠기를 이용한 진동 억제)

  • Kwak, Moon-K;Lee, Myeong-Il;Heo, Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.136-141
    • /
    • 2003
  • This paper is concerned with the eddy current damper which can be used to enhance the damping of the host structure. The operating principle of the eddy current damper is first explained in detail. The dynamic interaction between the magnets and the copper plate produces eddy current thus resulting in the damping force. By attaching the eddy current damper to the host structure, the damping of the total structure can be increased so that vibrations can be suppressed. The advantage of the eddy current damper is that it doesn't require any electronic devices and power supply. The effect of the eddy current damper on the global dynamic characteristics of the structure is investigated by considering the cantilever with the eddy current damper. Experimental results show that the eddy current damper is an effective device for vibration suppression.

  • PDF

Damping Force Characteristics of ER Damper Considering Hysteresis (ER 댐퍼의 이력현상을 고려한 댐핑력 특성 고찰)

  • 홍성룡;송현정;한상수;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.489-494
    • /
    • 2002
  • This paper presents hydraulic model which can capture the hysteric damping force behavior of ER damper. A flow mode rue ER damper is manufactured, and its field-dependent damping forces are measured. Newly proposed hydraulic model which derived from physical hydro-mechanical parameters of ER damper are conventional Bingham model are investigated to represent the field-dependent damping force characteristics of ER damper. After principal parameters of two models are estimated from the measured damping forces data, the force vs velocity hysteresis cycles are then reconstructed. The results show that the proposed hydraulic model can capture the hysteresis behavior of ER damper accurately.

  • PDF

A Study on the Torsional Vibration Damper of the Small Internal Combustion Engine Driving System(Part I) - Development of the Optimum Viscous-Rubber Damper- (소형내연기관축계의 비틀림진동댐퍼에 관한 연구 제1보 최적점성.고무탄성댐퍼의 개발)

  • 전효중;김유종;김의간;김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.44-52
    • /
    • 1991
  • The crankshaft system of engine is a complex vibratory object and its vibration modes are consisted of torsional, axial and their coupled vibration. Among them, the torsional vibration causes engine noise as well as serious fatigue faillures of crankshaft. If the troules of noises and crankshaft strength are forecasted by torsional vibration calculation in the design atage of crankshaft, the torsional damper is adopted as the final countermeasure. In this paper, some computer program to calculate crankshaft torsional vibration of engine are developed and with developed programs, an efficient rubber-viscous damper for automobile and with developed programs, an efficient rubber-viscous damper for automobile engine is designed and manufactured, and then it is fitted on the actual automobile engine to confirm its calculated efficiency. By comparing the measured result (with damper and without damper) with the calculated one, the reliability of developed computer programs and the performances of manufactured damper are confirmed.

  • PDF

Design of a Light Weight Watertight Damper for Offshore Rigs (해양시추선용 경량수밀댐퍼 설계)

  • HAN, Seung-Hun;JANG, Ji-Seong;JI, Sang-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1470-1477
    • /
    • 2016
  • This study has designed and evaluated the safety of watertight damper for Offshore Rigs. The watertight damper is an improved design for conventional DN 350 butterfly valve. Numerical analysis has been performed to investigate the safety factor and seat leakage of the designed 3-type disk dampers. The structure analysis results present the deformations, the equivalent stresses and the safety factor. It was confirmed that the designed disk, rib-disk and streamlined disk of watertight damper are safe enough in maximum operating pressure of 0.98MPa. The results show that the disk damper had the smallest maximum deformations and stress among 3-type disk dampers and the safety factor was 4.3. Therefore it is confirmed that the disk damper has the most excellent strength. Also linear static structural analysis was individually conducted for disk and body. The results show that the maximum disk deformation was larger than the body deformation, Therefore the disk damper is causes no seat leakage.

Numerically Analytical Design of An Orifice Fluid Damper (오리피스 유체댐퍼의 수치해석적 설계)

  • 이재천;김성훈;문석준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • This paper presents the numerical design technology of a passive orifice fluid damper system especially for the characteristics between the damper piston velocity and the damping force. Numerical analysis with the visual interfacial modeling technique was applied into the analysis of the damper system's dynamics. A prototype orifice fluid damper was manufactured and experimentally tested to validate the numerical simulation results. The performances of various damper system schemes were investigated based on the verified numerical simulation model of orifice fluid damper.

Development of Performance Analysis Program for a Hydraulic Shimmy Damper of Steering System (조향계 유압 시미댐퍼의 성능해석 프로그램 개발)

  • 이재천;정용승;김진홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.174-183
    • /
    • 2004
  • A program to analyze the performance characteristics of a hydraulic shimmy damper for automotive steering system was developed in this study. Dimensionless mathematical equations of the dynamics of shimmy damper for forward and reverse fluid flows were derived respectively and incorporated into the Simulink models. The program was validated by comparing the results of simulation and experiments for various frequencies of upstream ripple pressures into the damper. Low-pass filter characteristics of the shimmy damper at reverse flow was demonstrated which means that the shimmy damper could alleviate the high speed ripple pressures induced by the unbalance oscillation of tire in vehicle driving. The parameter sensitivity analysis was also conducted to identify the dominant parameters for the damper performance.

The controllable fluid dash pot damper performance

  • Samali, Bijan;Widjaja, Joko;Reizes, John
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.209-224
    • /
    • 2006
  • The use of smart dampers to optimally control the response of structures is on the increase. To maximize the potential use of such damper systems, their accurate modeling and assessment of their performance is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces, damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a Fourier series technique. The technique treats this one-dimensional Navier-Stokes's momentum equation as a linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No's RD-1005-3) subjected to a sinusoidal stroke motion using a 'SCHENK' material testing machine in the Materials Laboratory at the University of Technology, Sydney.

A Study on the Variable Damper System for Vehicle Driveline (차량구동계용 가변 댐퍼시스템에 관한 연구)

  • Park Dong-Hoon;Choi Myung-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9
    • /
    • pp.837-845
    • /
    • 2004
  • A variable friction damper for vehicle driveline has been proposed. This new torsional damper system uses a solenoid as an actuator to vary friction force of the damper. To verify the idea of using a solenoid in a variable damper system, the test fixture and the dampers are made and tested. Also, to find out the range of damper friction forces that influence the vehicle driveline vibration, a mathematical model of the driveline had been developed and simulated. Test and simulation results show that, within electric current used in the vehicle electric system, the solenoid can develop enough friction force that will surpass resonance in the driveline of 1.5 L Gasoline engine vehicle during acceleration.