• Title, Summary, Keyword: DVE/OEB System

Search Result 6, Processing Time 0.046 seconds

Protein Evaluation of Dry Roasted Whole Faba Bean (Vicia faba) and Lupin Seeds (Lupinus albus) by the New Dutch Protein Evaluation System: the DVE/OEB System

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.871-880
    • /
    • 1999
  • The effects of dry roasting (110, 130, $150^{\circ}C$ for 15, 30, 45 min) on potential ruminant protein nutritional values in terms of: a), rumen bypass protein (BCP); b), rumen bypass starch (BST); c), fermented organic matter (FOM); d), true absorbed bypass protein (ABCP); e) microbial protein synthesized in the rumen based on available energy (E_MP); f), microbial protein synthesized in the rumen based on available nitrogen (N_MP); g), true protein supplied to the small intestine (TPSI); h), true absorbed rumen synthesized microbial protein (AMP); i), endogenous protein losses (ENDP); j), true digested protein in the small intestine (DVE); k), degraded protein balance (OEB) of whole lupin seeds (WLS) and faba beans (WFB) were evaluated by the new Dutch DV/OEB protein evaluation system. Dry roasting significantly increased BCP, BST, TPSI, ABCP, DVE (p<0.001) and decreased FOM, E_MP, AMP, N_MP and OEB (p<0.001) with increasing temperatures and times except that when temperature was at $110^{\circ}C$. The values of BCP, BST, TPSI, ABCP and DVE at $150^{\circ}C/45min$ for WLS and WFB were increased 2.2, 3.7; -, 2.0; 1.7, 1.7; 2.3, 3.7 and 1.7, 1.7 times and the values of FOM, E_MP, AMP, N_MP and OEB at $150^{\circ}C/45min$ for WLS and WFB were decreased by 15.3, 25.8; 18.1, 25.8; 18.7, 25.8; 54.6, 41.6 and 82.3% 54.7%, respectively, over the raw WLS and WFB. The results indicated that though dry roasting reduced microbial protein synthesis due to reducing FOM, TPSI didn't decrease but highly increased due to increasing BCP more than enough for compensation of the microbial protein decreasing. Therefore the net absorbable DVE in the small intestine was highly increased. The OEB values were significantly reduced for both WLS and WFB but not to the level of negative. It indicated that microbial protein synthesis might not be impaired due to the sufficient N supplied in the rumen, but the high positive OEB values in the most treatments except of $150^{\circ}C$ for 30 and 45 min of WLS (The OEB values: 54.8 and 26.0 g/kg DM) indicated that there were the large amounts of N loss in the rumen. It was concluded that dry roasting at high temperature was effective in shifting protein degradation from rumen to intestines and it increased the DVE values without reaching the negative OEB values. No optimal treatment was found in WLS due to the too high OEB values in all treatments. But dry roasting at $150^{\circ}C$ for 30 and 45 min might be optimal treatments for WLS due to the very lower OEB values.

Probing Equivocal Effects of Heat Processing of Legume Seeds on Performance of Ruminants - A Review -

  • Yu, P.;Tamminga, S.;Egan, A.R.;Christensen, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.869-876
    • /
    • 2004
  • Published studies show that effects of heat processing of legume seeds on animal performance are equivocal. In this article, we used a nutrition model - the DVE/OEB system to re-analyze nutrient supply (such as truly absorbed intestinal protein DVE value and protein degradation balance OEB value) to ruminants from published studies to probe reasons for such equivocal effects and provided some explanation why equivocal effects occurred. The analysis results showed that an unsuitable supply of nutrients in terms of DVE and OEB intakes (negative total OEB intake, oversupply of total DVE values) resulted in an inability to detect the effectiveness of heat processing in altering bypassing protein (BCP) and/or starch (BST) and their effects. The overall nutrient supply to animal in an experiment should be the context in which any animal performance study is developed. The information described in this article may give better understanding of animal performance in relation to nutritive changes occurring upon processing of legume seeds.

Model Prediction of Nutrient Supply to Ruminants from Processed Field Tick Beans

  • Yu, P.;Christensen, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1674-1680
    • /
    • 2004
  • The objective of this study was to compare the Dutch DVE/OEB system and the NRC-2001 model in the prediction of supply of protein to dairy cows from processed field tick beans. Comparisons were made in terms of 1) ruminally synthesized microbial CP, 2) truly absorbed protein in the small intestine, and 3) degraded protein balance. The results showed that the predicted values from the DVE/OEB system and the NRC-2001 model had significant correlations with high R (>0.90) values. However, using the DVE/OEB system, the overall average microbial protein supply based on available energy was 16% higher and the truly absorbed protein in the small intestine was 9% higher than that predicted by the NRC-2001 model. The difference was also found in the prediction of the degraded protein balances (DPB), which was 5% lower than that predicted based on data from the NRC-2001 model. These differences are due to considerably different factors used in calculations in the two models, although both are based on similar principles. It need to mention that this comparison was based on the limited data, the full comparison involving various types of concentrate feeds will be investigated in the future.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Modeling Nutrient Supply to Ruminants: Frost-damaged Wheat vs. Normal Wheat

  • Yu, Peiqiang;Racz, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.333-339
    • /
    • 2010
  • The objectives of this study were to use the NRC-2001 model and DVE/OEB system to model potential nutrient supply to ruminants and to compare frost damaged (also called "frozen" wheat with normal wheat. Quantitative predictions were made in terms of: i) Truly absorbed rumen synthesized microbial protein in the small intestine; ii) Truly absorbed rumen undegraded feed protein in the small intestine; iii) Endogenous protein in the digestive tract; iv). Total truly absorbed protein in the small intestine; and v). Protein degraded balance. The overall yield losses of the frozen wheat were 24%. Results showed that using the DVE/OEB system to predict the potential nutrient supply, the frozen wheat had similar truly absorbed rumen synthesized microbial protein (65 vs. 66 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (39 vs. 53 g/kg DM; p<0.10) and had higher endogenous protein (14 vs. 9 g/kg DM; p<0.05). Total truly absorbed protein in the small intestine was significantly lower (89 vs. 110 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was similar and both were negative (-2 vs. -1 g/kg DM). Using the NRC-2001 model to predict the potential nutrient supply, the frozen wheat also had similar truly absorbed rumen synthesized microbial protein (average 56 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (35 vs. 48, g/kg DM; p<0.10) and had similar endogenous protein (average 4 g/kg DM; p>0.05). Total truly absorbed protein in the small intestine was significantly lower (95 vs. 108 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was not significantly different and both were negative (-16 vs. -19 g/kg DM). In conclusion, both models predict lower protein value and negative protein degraded balance in the frozen wheat. The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants by around 12 to 19%.

Influence of Pressure Toasting on Starch Ruminal Degradative Kinetics and Fermentation Characteristics and Gelatinization of Whole Horse Beans (Vicia faba) in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.537-543
    • /
    • 1999
  • Whole horse beans (Vicia faba cv. Alfred) (WHB) were pressure toasted at different temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 minutes in order to determine an optimal heating conditions to increase bypass starch (BPSt) as glucose source which is usually limiting nutrient in highly producing dairy cows in the Netherlands. Starch (St) Ruminal Degradative Kinetics and Fermentation Characteristics of (SRDC) of WHB were determined using in sacco technique in 4 lactating dairy cows fed 47% hay and 53% concentrate according to Dutch dairy cow requirements. Measured characteristics of St were soluble fraction (S), potentially degradable fraction (D) and rate of degradation (Kd) of insoluble but degradable fraction. Based on measured characteristics, percentage bypass starch (BPSt) was calculated according to the Dutch new feed evaluation system: the DVE/OEB system. Pressure toasting temperatures significantly affected starch gelatinization (p<0.01). Degradability of Starch in the rumen was highly reduced by pressure toasting (p<0.01). S varied from 58.2% in the raw WHB (RWHB as a control) to 19.6% in $136^{\circ}C/15min$. S was reduced rapidly with increasing time and temperature (p<0.01). D varied from 41.8% in RWHB to 80.5% in $136^{\circ}C/15min$. D fraction was enormously increased with increasing time and temperature (p<0.01). Kd varied from 4.9%h in RWHB to 3.4%/h in $136^{\circ}C/15min$. All these effects resulted in increasing %BPSt from 29.0% in RWHB to 53.1% in $136^{\circ}C/15min$. Therefore BPSt increased from 93.5 g/kg in RWHB to 173.5 g/kg in $136^{\circ}C/15min$. The effects of pressure toasting on %BPSt and BPSt seemed to be linear up to the highest values tested. Therefore no optimal pressure toasting conditions could be determined at this stage. But among 10 treatments, The treatment of $136^{\circ}C/15min$was the best with the highest BPSt content. It was concluded that pressure toasting was effective in shifting starch degradation from rumen to small intestine to increase bypass starch.