• Title, Summary, Keyword: DNA barcode

Search Result 93, Processing Time 0.059 seconds

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF

Identification of bird species and their prey using DNA barcode on feces from Korean traditional village groves and forests (maeulsoop)

  • Joo, Sungbae;Park, Sangkyu
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.488-497
    • /
    • 2012
  • A DNA barcode based on 648 bp of cytochrome c oxidase I (COI) gene aims to build species-specific libraries for animal groups. However, it is hard to recover full-length (648 bp) barcode gene from environmental fecal samples due to DNA degradation. In this study, we designed a new primer set (K_Bird), which amplifies a 226 bp fragment targeted an inner position of full-length COI barcode based on 102 species of Korean birds to improve amplification success, and we attempted to identify bird species from 39 avian fecal samples collected during 4 months from Jinan, South Korea. Simultaneously, we conducted a dietary analysis using a universal DNA mini-barcode (Uni_Minibar) from same fecal samples. In silico analysis on newly designed mini-barcode represented that genetic distances were 0.5% in species and 9.1% in genera. Intraspecific variations of 149 species out of 174 species (86%) between Korea and North America were within the threshold (5.3% threshold in this study). From environmental fecal samples collected in Jinan, we identified seven avian species, which have high similarity (99-100%) with registered COI sequences in GenBank. Eight kinds of prey species, such as moth, spider, fly, and dragonfly, were identified in dietary analysis. We suppose that our strategy applying mini-barcode for environmental fecal samples, might be a useful and convenient tool for species identification and dietary analysis for birds.

Error Correcting using the Check digit on Barcode, and the present and future of Barcode (바코드에 있어서 체크숫자를 이용한 오류수정과 바코드의 현재와 미래)

  • Kim, Hwa-Joon
    • Journal for History of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.103-118
    • /
    • 2008
  • Barcode technology is becoming an essential tool for every companies, and this makes help us to gain time, analysis of goods, an inventory control, a prevention of burglar and so on. In this paper, we have treated about the history of barcode, its error correcting using the check digit, and the present and future of barcode. We wish roles of mathematician on new barcode system which it bring on an economical efficiency and stability.

  • PDF

Identification of Korean Poaceae Weeds Based on DNA Sequences (DNA 염기서열에 기초한 벼과 잡초의 분자생물학적 동정)

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong;Oh, Hyun-Ju;Kim, Jung Hyun;Kim, Sun Yu
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.26-34
    • /
    • 2015
  • Korean Poaceae includes approximately 80 species of the agricultural weeds. Precise species identification is the first step for more effective weed management in the agricultural fields. However, the identification of species in Poaceae is not easy without the assistance of taxonomists or identification experts although they are relatively easy to distinguish from the plants of the other family by the unique characteristics of caryopsis. Thus, DNA barcode was suggested as an alternative powerful technique for species identification by using short sections of DNA from a specific region of the genome. Two standard barcode markers of vascular plants, chloroplast rbcL and matK, and a supplementary nuclear ribosomal Internal Transcribed Spacer (ITS) region were used for barcode of major Korean Poaceae weeds, 403 individuals of 84 taxa. All the barcode markers revealed a good level of sequencing success with the lowest 73.7% for matK and the highest 88.8% for rbcL. The barcode sequences were deposited to the National Center for Biotechnology Information (NCBI) database for public use. Combined matK and ITS showed very high resolving power with 92.9%. Besides the identification of weeds for weed managment, the generated DNA barcode data could be used for many other applications such as rapid biodiversity assessment and conservation prioritization.

Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis (엽록체 DNA 바코드 분석을 통한 한국산 두릅나무과 식물 14종의 유연관계 분석)

  • Hwang, Hwan Su;Choi, Yong Eui
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.82-90
    • /
    • 2016
  • Most Araliaceae plant species distributed in Korea are economically important because of their high medicinal values. This study was conducted to develop barcode markers from sequence analysis of chloroplast DNA in 14 taxa of Araliaceae species grown in South Korea. Sequencing of seven chloroplast DNA regions was performed to establish the DNA barcode markers, as suggested by the Consortium for the Barcode of Life (CBOL). From the sequence analysis of chloroplast DNA, we identified specific sequences and nucleotides that allowed us to discriminate among each other 14 Korean Araliaceae species. The sequence in the region of psbA-trnH revealed the most frequent DNA indels and substitutions of all 7 regions studied. This psbA-trnH marker alone can discriminate among all 14 species. There are no differences between Korean and Chinese Panax ginseng in all seven sequenced chloroplast DNA regions. A phylogenetic tree constructed using the seven chloroplast DNA regions revealed that Tetrapanax papyriferus should be classified as an independent clade. The Aralia and Panax genera showed a close phylogenetic relationship. Five species in the Eleutherococcus genus were more closely related to Kalopanax septemlobus than to any Panax species.

DNA barcoding of Schisandraceae in Korea (한국산 오미자과의 DNA 바코드)

  • Youm, Jung Won;Han, Sang-Wook;Seo, Seon Won;Lim, Chae Un;Oh, Sang-Hun
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.3
    • /
    • pp.273-282
    • /
    • 2016
  • The establishment of a DNA barcode database at the regional scale and assessments of the utility of DNA barcodes are crucial for conservation biology and for the sustainable utilization of biological resources. Schisandraceae is a small family consisting of ca. 45 species. It contains many economically important species, such as Schisandra chinensis, which is widely used as a source in tonic beverages and in oriental medicine. In Korea, three species, S. chinensis, S. repanda, and Kadsura japonica, are distributed. We evaluated the level of variation of the DNA sequences of rbcL, matK, and the ITS regions from 13 accessions representing the distributional range of the three species. The three DNA barcode regions were easily amplified and sequenced. The minimum values of the interspecific genetic distances among S. chinensis, S. repanda, and K. japonica either separately or in combination are 4- to 23-fold higher than the maximum value of the intraspecific distance, showing that there is a clear DNA barcoding gap in the regions for Korean Schisandraceae. Phylogenetic analyses of the three DNA barcode regions, separately and simultaneously, indicate that all of the DNA barcode regions are useful for identifying a species of Schisandraceae in Korea. The distinctiveness of the three species of Schisandraceae was also supported at the species level when Chinese and Japanese populations were added. The results of this study indicate that three concatenated regions constitute the best option for DNA barcoding in Schisandraceae in Korea.

Development of Molecular Markers for the authentication of Zanthoxyli Pericarpium by the analysis of rDNA-ITS DNA barcode regions (rDNA-ITS DNA 바코드 부위 분석을 통한 산초(山椒) 기원종 감별용 유전자 마커 개발)

  • Kim, Wook Jin;Ji, Yunui;Lee, Young Mi;Kang, Young Min;Choi, Goya;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.30 no.3
    • /
    • pp.41-47
    • /
    • 2015
  • Objectives : Due to the morphological similarity of the pericarp and description of multi-species in National Pharmacopoeia of Korea and China, the Zanthoxylum Pericarpium is difficult to authenticate adulterant in species levels. Therefore, we introduced the sequence analysis of DNA barcode and identification of single nucleotide polymorphism(SNP) to establish a reliable tool for the distinction of Zanthoxylum Pericarpium from its adulterants. Methods : To analyze DNA barcode region, genomic DNA was extracted from twenty-four specimens of authentic Zanthoxylum species and inauthentic adulterant and the individual internal transcribed spacer regions (rDNA-ITS and ITS2) of nuclear ribosomal RNA gene were amplified using ITS1, ITS2-S2F, and ITS4 primer. For identification of species-specific sequences, a comparative analysis was performed using entire DNA barcode sequences. Results : In comparison of four Zanthoxylum ITS2 sequences, we identified 16, 4, 6, and 4 distinct species-specific nucleotides enough to distinguish Z. schinifolium, Z. bungeanum, Z. piperitum, and Z. simulans, respectively. The sequence differences were available genetic marker to discriminate four species. Futhermore, phylogenetic relationship revealed a clear classification between different Zanthoxylum species showing 4 different clusters. These results indicated that comparative analysis of ITS2 DNA barcode was an useful genetic marker to authenticate Zanthoxylum Pericarpium in species levels. Conclusions : The marker nucleotides, enough to distinguish Z. schinifolium, Z. piperitum, Z. bungeanum, and Z. simulans, were obtained at 30 SNP marker nucleotides from ITS2 sequences. These differences could be used to authenticate official Zanthoxylum Pericarpium from its adulterants as well as discriminating each four species.

Molecular Identification of Pooideae, Poaceae in Korea (국내 농경지에 발생하는 포아풀아과 잡초의 분자생물학적 동정)

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.18-25
    • /
    • 2015
  • A universal DNA barcoding for agricultural noxious weeds is a powerful technique for species identification without morphological knowledge, by using short sections of DNA from a specific region of the genome. Two standard barcode markers, chloroplast rbcL and matK, and a supplementary nuclear ribosomal Internal Transcribed Spacer (ITS) region were used to examine the effectiveness of the markers for Pooideae barcoding using 163 individuals of 29 taxa across 16 genera of Korean Pooideae. The rbcL and ITS revealed a good level of amplification and sequencing success while matK did not. Barcode gaps were 78.6% for rbcL, 96.2% for matK, and 91.7% for ITS, respectively. Resolving powers were 89.3% for rbcL, 92.3% for matK, and 79.1% for ITS. The matK obtained the best both barcode gap and resolving power. However, it should be considered not to employ matK for Pooideae barcode because of low rate of PCR amplification and sequencing success. As a single DNA marker, rbcL and ITS were reasonable for Pooideae barcode. Barcode gap and resolving power were increased when ITS was incorporated into the rbcL. The barcode sequences were deposited to the National Center for Biotechnology Information (NCBI) database for public use.

DNA Barcode Examination of Bryozoa (Class: Gymnolaemata) in Korean Seawater

  • Lee, Hyun-Jung;Kwan, Ye-Seul;Kong, So-Ra;Min, Bum-Sik;Seo, Ji-Eun;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.27 no.2
    • /
    • pp.159-163
    • /
    • 2011
  • DNA barcoding of Bryozoa or "moss animals" has hardly advanced and lacks reference sequences for correct species identification. To date only a small number of cytochrome c oxidase subunit I (COI) sequences from 82 bryozoan species have been deposited in the National Center for Biotechnology Information (NCBI) GenBank and Barcode of Life Data Systems (BOLD). We here report COI data from 53 individual samples of 29 bryozoan species collected from Korean seawater. To our knowledge this is the single largest gathering of COI barcode data of bryozoans to date. The average genetic divergence was estimated as 23.3% among species of the same genus, 25% among genera of the same family, and 1.7% at intraspecific level with a few rare exceptions having a large difference, indicating a possibility of presence of cryptic species. Our data show that COI is a very appropriate marker for species identification of bryozoans, but does not provide enough phylogenetic information at higher taxonomic ranks. Greater effort involving larger taxon sampling for the barcode analyses is needed for bryozoan taxonomy.

DNA Barcoding Korean Birds

  • Yoo, Hye Sook;Eah, Jae-Yong;Kim, Jong Soo;Kim, Young-Jun;Min, Mi-Sook;Paek, Woon Kee;Lee, Hang;Kim, Chang-Bae
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.323-327
    • /
    • 2006
  • DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxidase I (COI) might serve as a DNA barcode for identifying animal species such as North American birds, insects and fishes. The present study tested the effectiveness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI barcode for 92 species of Korean birds and found that species identification was unambiguous; the genetic differences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased intra- and interspecies sampling, as well as supplementation of the mitochondrial barcodes with nuclear ones, is needed.