• Title, Summary, Keyword: Crystalline PV module

Search Result 55, Processing Time 0.03 seconds

Electrical Characteristics Analysis for single-crystalline and multi-crystalline PV module optical character. (단결정과 다결정 태양전지 모듈의 광학적 특성에 따른 전기적 출력 특성 분석)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyunggun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1100-1101
    • /
    • 2008
  • After lamination process, Isc is increased by sheet reflection. This paper presents the electrical output characteristics by back sheet reflection. The experiments was conducted by using single crystalline and multi crystalline PV module. The reflection area of single crystalline PV module is larger than multi one due to the difference of solar cell manufacturing. The experiments show that the increased performance ratio of single crystalline PV module output power is 1.55% rather than that of multi crystalline PV module output power is 1.13%. In addition, it is expected that the output power of single one rather than multi-one is increased by the lower temperature when the PV module is installed outside. The results can be reconsidered by the test material and test process. Back sheet used for humidity prevention makes PV module output power increasing.

  • PDF

Characteristics and Quantification of Shaded Performance for Crystalline Silicon Photovoltaic Module (실리콘 결정계 태양광 모듈의 음영 성능 특성 및 정량화 방안)

  • Seong, Yoon-Bok;Moon, Eunjin;Jeong, Yong-Dae;Lim, Jae-Han
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.11 no.2
    • /
    • pp.162-173
    • /
    • 2017
  • The objective of this study was to investigate the mono-crystalline photovoltaic modules and poly-crystalline photovoltaic modules characteristics of power reduction and quantification of performance depending on the shading. In order to determine the shading performance quantitatively, coefficient of shading performance, CSH, were proposed by analyzing the generation performance and explaining the regularity according to the shading location and area, which followed PV module examinations in STC(Standard Test Condition) of IEC(International Electrotechnical Commission). Proposed performance index can be sufficiently utilized to increase the accuracy of predicting the effective PV module generation for designing the photovoltaic system in practice.

Accuracy Enhancement of Output Measurement by Silicon Crystalline Photo Voltaic (PV) Module Production Process Optimization (Crystalline Silicon Photo Voltaic (PV) Module의 양산 공정 최적화에 의한 Module 출력 측정 정확성 향상)

  • Lee, Jongpil;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • In silicon crystalline PV (Photo Voltaic) industry, PV module or panel electric power is directly related to the companies' profit. Thus, many PV companies have invested and focused on R&D activities to get the higher module power. The main BOM (Bills of Material) on the module consists of PV solar cell, ribbon, EVA (Ethylene-Vinyl Acetate copolymer), glass and back sheet. Based on consistent research efforts on enhancing module power using BOM, there have been increase of around 5 watt per module every year as results. However, there are lack of studies related to enhancing accuracy of measurement. In this study, the enhancing on the metrology is investigated and the improvement shows actually contribution to company's profit. Especially, the measurement issues related to heat and to quasi state of bandgap diagram by EL(Electro Luminescence) are described in this study.

A Review on the Failure Mechanism for Crystalline Silicon PV Module (결정계 PV 모듈에 대한 고장 메커니즘 검토)

  • Kim, Jeong-Yeon;Kim, Ju-Hee;Chan, Sung-Il;Lim, Dong-Gun;Kim, Yang-Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • It is summarized that potential causes of performance degradations and failure mechanisms of crystalline silicon photovoltaic (PV) modules installed in Middle East area. In addition, we also reviewed current PV module qualification test (IEC 61215) and the methods for detection of wear-out fault. The failure of PV modules in the extreme environmental conditions such as deserts is mainly due to high temperature, humidity, and dust storms. In particular, cementation phenomenon caused by combination of sand and moisture leads to rapid degradation in the performance of PV modules. In order to evaluate and guarantee the long term reliability of PV modules, specific qualification tests such as sand dust test, salt mist test and potential induce degradation test considering operating environment of PV module should be carried out.

HIT PV Module Performance Research for an Improvement of Long-term Reliability: A Review

  • Park, Hyeong Sik;Jeong, Jae-Seong;Park, Chang Kyun;Lim, Kyung Jin;Shin, Won Seok;Kim, Yong Jun;Kang, Jun Young;Kim, Young Kuk;Park, No Chang;Nam, Sang-Hun;Boo, Jin-Hyo;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • We report finding ways to improve the long-term reliability of PV module including the heterostructure with the intrinsic thin layer (HIT) solar cell. We point out the stability of the products of Panasonic HIT cell. We account for a brief description of the module manufacturing process to investigate the issues of each process and analyze the causes. We carried out the silicon PV module of the glass to glass type under the damp heat test around 1000 hours. However, it degraded around 7% of PV module power after 300 hours exposure in comparison with the initial status (Initial: 12.7 Watt). We investigated possible cause and solutions for the module performance to develop the long-term reliability.

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

The Durability Estimation of Crystalline PV Module according to Mechanical Stress (결정질 태양전지모듈의 외부 응력에 따른 장기적 내구성 예측)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.35-36
    • /
    • 2008
  • In this paper, we studied the long term durability estimation for crystalline photovoltaic module while exposing to mechanical stress. Solar cell and PV module have many different kinds of stresses from cell to module fabrication. For this reason, some solar cell shows micro crack that decrease crystallization. In here, we expose artificial mechanical load on surface of PV module. Through this, the periodic external force on PV module might give an negative effect. The further analysis is described in the following paper.

  • PDF

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.

A Study on Correlation between Improvement in Efficiency of PV and Green roof of Public Building (공공건물 옥상녹화와 설치태양광(PV)의 효율향상 상관관계 연구)

  • Lee, Eung Jik
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.111-118
    • /
    • 2013
  • This study aims to investigate advantages of complex installation of green roof and PV system in a public building, to analyze the impact of green roof on the efficiency of PV power generation, and to consider the correlation between green roof and PV power generation. When the temperature and power generation of the modules installed in the green roof and non-green roof of the public building were measured for 3 days, the average temperature of the green roof was 23.6 degrees, and it was 36.1 degrees in the non-green roof which increased by nearly 53%. Overall, the module temperature in the green roof was lower. On the other hand, in relation to the PV generation depending on temperature reduction during the same period, the mono-crystalline module and the poly-crystalline module in the green roof showed an increase in generation at nearly 222.2W and 341.6W, and the efficiency rose by 5.5% and 6.2%, respectively, compared to the modules in the non-green roof. Therefore, it is analyzed that green roof has a positive influence on PV power generation. Finally shows the efficiency of the installed on the Green Roof PV system (complex Installation) higher than on the concrete roof PV system. Thus, the complex PV systems as well as the usual benefits of green roofs will provide greater synergies.