• Title, Summary, Keyword: Crossing Behavior

Search Result 115, Processing Time 0.041 seconds

Analysis on Pedestrian Behavior Focused on Waiting Time and Trial Frequency for Crossing in the Unsignalized Intersection (비신호 교차로에서 횡단 기다림 시간 및 시도횟수에 관한 보행행태 연구)

  • Jang, Tae Youn;Oh, Do-Hyoung
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.35 no.2
    • /
    • pp.427-436
    • /
    • 2015
  • This study analyzes the factors effecting on pedestrian crossing behavior in the unsignalized intersection. Pedestrian crossing behavior is the results of mental stress defined as a combination of environment perception, avoiding accidents, halting collision, and instant crossing decision. It is necessary to make walkable intersection in cities through relieving this stress influenced by personality, traffic condition, and roadway environment. The purpose of study is empirically to examine the crossing behavior such as crossing satisfaction, crossing trial frequency and waiting time based on various factors effecting on crossing intersection by video and questionnaire survey. The $x^2$-test is applied to analyze the characteristics of crossing trial frequency according to each factor. Also, the hazard rate model is established to find the factors effecting on waiting time for crossing. Finally, the direct and indirect effects on the pedestrian crossing satisfaction are presented as the results of LISREL.

Fatigue Behavior Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로거동 평가)

  • Song, Sun-Ok;Eom, Mac;Yang, Shin-Chu;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.447-453
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue behavior evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable for fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation for the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type. And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%)more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective for ensure against fatigue risks.

  • PDF

HOG based Pedestrian Detection and Behavior Pattern Recognition for Traffic Signal Control (교통신호제어를 위한 HOG 기반 보행자 검출 및 행동패턴 인식)

  • Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1017-1021
    • /
    • 2013
  • The traffic signal has been widely used in the transport system with a fixed time interval currently. This kind of setting time was determined based on experience for vehicles to generate a waiting time while allowing pedestrians crossing the street. However, this strict setting causes inefficient problems in terms of economic and safety crossing. In this research, we propose a monitoring algorithm to detect, track and check pedestrian crossing the crosswalk by the patterns of behavior. This monitoring system ensures the safety for pedestrian and keeps the traffic flow in efficient. In this algorithm, pedestrians are detected by using HOG feature which is robust to illumination changes in outdoor environment. According to a complex computation, the parallel process with the GPU as well as CPU is adopted for real-time processing. Therefore, pedestrians are tracked by the relationship of hue channel in image sequence according to the predefined pedestrian zone. Finally, the system checks the pedestrians' crossing on the crosswalk by its HOG based behavior patterns. In experiments, the parallel processing by both GPU and CPU was performed so that the result reaches 16 FPS (Frame Per Second). The accuracy of detection and tracking was 93.7% and 91.2%, respectively.

Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults

  • Zhang, Dan F.;Bie, Xue M.;Zeng, Xi;Lei, Zhen;Du, Guo F.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.71-86
    • /
    • 2020
  • This paper presents a study on the mechanical behavior of buried pipelines crossing faults using experimental and numerical methods. A self-made soil-box was used to simulate normal fault, strike-slip fault and oblique slip fault. The effects of some important parameters, including the displacement and type of fault, the buried depth and the diameter of pipe, on the deformation modes and axial strain distribution of the buried pipelines crossing faults was studied in the experiment. Furthermore, a finite element analysis (FEA) model of spring boundary was developed to investigate the performance of the buried pipelines crossing faults, and FEA results were compared with experimental results. It is found that the axial strain distribution of those buried pipelines crossing the normal fault and the oblique fault is asymmetrical along the fault plane and that of buried pipelines crossing the strike-slip fault is approximately symmetrical. Additionally, the axial peak strain appears near both sides of the fault and increases with increasing fault displacement. Moreover, the axial strain of the pipeline decreases with decreasing buried depth or increasing ratios of pipe diameter to pipe wall thickness. Compared with the normal fault and the strike-slip fault, the oblique fault is the most harmful to pipelines. Based on the accuracy of the model, the regression equations of the axial distance from the peak axial strain position of the pipeline to the fault under the effects of buried depth, pipe diameter, wall thickness and fault displacement were given.

Dynamic response characteristics of crossing tunnels under heavy-haul train loads

  • Dong, Jie;Zhong, Shuai;Wang, Hai-long;Wu, Zhi-hui
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • The dynamic response of crossing tunnels under heavy-haul train loads is still not fully understood. In this study, based on the case of a high-speed tunnel underneath an existing heavy-haul railway tunnel, a model experiment was performed to research the dynamic response characteristics of crossing tunnels. It is found that the under-crossing changes the dynamic response of the existing tunnel and surrounding rock. The acceleration response of the existing tunnel enhances, and the dynamic stress of rock mass between crossing tunnels decreases after the excavation. Both tunneling and the excitation of heavy-haul train loads stretch the tunnel base, and the maximum tensile strain is 18.35 µε in this model test. Then, the measured results were validated by numerical simulation. Also, a parametric study was performed to discuss the influence of the relative position between crossing tunnels and the advanced support on the dynamic behavior of the existing tunnel, where an amplifying coefficient of tunnel vibration was introduced to describe the change in acceleration due to tunneling. These results reveal the dynamic amplifying phenomenon of the existing tunnel during the new tunnel construction, which can be referred in the dynamic design of crossing tunnels.

Fatigue Life Evaluation for Railway Turnout Crossing using the Field Test (현장측정을 통한 분기기 망간 크로싱의 피로수명 평가)

  • Um, Ju-Hwan;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2
    • /
    • pp.169-173
    • /
    • 2006
  • The major objective of this study is to investigate the fatigue life evaluation of immovability crossing for railway turnout by the field test. In railway engineering, an appliance is necessary to allow a vehicle to move from one track to another. This appliance came to be known technically as turnout. So, turnout is required very complex railway technologies such as rolling stock, track. Due to the plan under the application of high speed train, turnout are needed more stable far fatigue behaviors. It analyzed the mechanical behaviors of turnout crossing with propose its advanced technical type on the field test and fatigue evaluation far the dynamic fatigue characteristics. As a result, the advanced type crossing are obviously effective for the fatigue damage ratio and dynamic response which is non-modified type. The analytical and experimental study are carried out to investigate the passing path of contact surface and fatigue damage trend decrease dynamic stresses and deflections on advanced crossing type, And the advanced type reduce dynamic fatigue damage ratio and increase fatigue life(about each 38%) more than non-modified type. From the field test results of the servicing turnout crossing, it is evaluated that the modification of contact angle, weight, material and sectional properties is very effective fur ensure against fatigue risks.

Crash Risks and Crossing Behavior of older pedestrians in Mid-block Signalized Crosswalks (단일로 횡단보도에서의 고령보행자 횡단특성과 사고에 관한 연구)

  • Seo, Geumyeol;Choi, Jaisung;Jeong, Seungwon;Yeon, Junhyoung;Kim, Jeongmin
    • International Journal of Highway Engineering
    • /
    • v.19 no.4
    • /
    • pp.69-78
    • /
    • 2017
  • PURPOSES : In this study, we analyzed the road crossing behavior of older pedestrians on a mid-block signalized crosswalk, and compared it to that of younger pedestrians. In addition, we analyzed the correlation between accidents involving older pedestrians while crossing roads and their behavioral characteristics. Finally, we confirmed the reasons for an increase in accidents involving older pedestrians. METHODS : First, 30 areas with the highest incidence of accidents involving older pedestrians while crossing roads were selected as target areas for analysis. Next, we measured the start-up delay (the time elapsed from the moment the signal turns green to the moment the pedestrian starts walking) and head movement (the number of head turns during crossing a road) of 900 (450 older and 450 younger) pedestrians. The next step was to conduct a survey and confirm the differences in judgment between older and younger pedestrians about approaching vehicles. Finally, we analyzed the correlation between the survey results and traffic accidents. RESULTS : The average start-up delay and head movement of the older pedestrians was 1.58 seconds and 3.15 times, respectively. A definite correlation was obtained between head movement and the frequency of pedestrian traffic accidents. The results of our survey indicate that 17.3% of the older pedestrians and 7.8% of the younger pedestrians have a high crash risk. CONCLUSIONS : Behavioral characteristics of older pedestrians were closely correlated with accidents involving older pedestrians while crossing roads in mid-block signalized crosswalks. Our study indicates that in order to reduce the number of accidents involving older pedestrians, it is necessary to develop an improvement plan including measures such as installation of safety facilities taking the behavioral characteristics of older pedestrians into consideration and their safety education.

Stability Evaluation of Bump Crossing and Loading of Proto-type Mini-Forwarder by Computer Simulation (컴퓨터 시뮬레이션을 이용한 소형 임내차 시작기의 장애물 통과 및 적재 안정성 평가)

  • Park H. K.;Kim K. U.;Shim S. B.;Kim J. W.;Park M. S.;Song T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6
    • /
    • pp.366-372
    • /
    • 2005
  • The objective of this study was to evaluate the bump crossing and loading stability of a proto-type mini-forwarder under development. The evaluation was performed by computer simulation using a multi-body dynamic analysis program, Recur- Dyn 5.21. The proto-type was modeled and its properties such as mass, mass center, and mass moment of inertia were determined using 3D CAD modeler, Solid Edge 8.0. The $\%$ errors of masses, mass center, mass moment of inertia, and vertical motion of the model were within less than $10\%$ and the model's behavior agreed relatively well with those of the proto-type when traversing over a rectangular bump. Using the validated model, bump crossing of the proto-type was simulated and the loading limit was determined. It was found that effects of the shapes of bump on the bump crossing performance was insignificant within the practical heights of bumps. Stability of bump crossing increased with loading. However, loading of longer logs than 2.7 m made the crossing unstable because the ends of logs contacted ground when traversing over the bump. The maximum loading capacity of the proto-type was estimated to be 7.8 kN of 2.7 m long logs.

A Study on the Location of Bicycle Crossing considering Safety of Bicycle Users at Intersection (자전거 이용자의 안전성을 고려한 교차로 자전거 횡단도의 설치 위치에 관한 연구)

  • Hwang, Junghoon
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • PURPOSES : Recently, there are increasing bicycle accidents along with increasing bicycles users. Bicycle accidents occurred frequently by perpendicular collision form at intersection inner. In order to improve safety of bicycle, drivers need to be aware of bicycles on the road and intersection geometric designs need to be designed to reduce risk associated with collisions between bicycles and car. This study aims to review the location of bicycle crossing in the viewpoint of bicycle safety. METHODS : Four types of bicycle crossing by curve radius and driver's check around the behavior are set to simulate the risk of collisions between bicycles and car turning right. Simulation using fortran programming are conducted on total 60 cases. RESULTS : Bicycle crossing located behind of crosswalk is lower the risk of collisions with car in all cases. In addition to the larger curve radius of pavement edge at intersection and the more pay attention to the rear by the turn head to the right is too low the risk of collisions with car. CONCLUSIONS : It is show that the location of bicycle crossing is safer behind than in front of crosswalk in the viewpoint of bicycle safety.