• Title, Summary, Keyword: Cropping system

Search Result 509, Processing Time 0.045 seconds

Effects of Hairy Vetch and Rye Cover on Weed Occurrences and Minor Cereal Growth (피복작물처리에 따른 잡곡의 생육과 잡초발생)

  • Jeon, Seung-Ho;Lee, Se-Hun;Oh, Se-Yun;Kim, Young-Ju;Kim, Kyung-Moon;Kim, Seok-Hyun;Hwang, Jae-Bok;Yoon, Seong-Tak;Shim, Sang- In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.134-139
    • /
    • 2011
  • This study was conducted to evaluate the weed suppressing effects of two winter cover crops, hairy vetch and rye in foxtail millet and sorghum fields in 2010. Crop growth and development and weed occurrences in the fields were examined to know the efficiency of proposed cropping system. In hairy vetch treated plots, heading of minor cereals occurred early. The heading date was earlier by 1 day and 2 days in sorghum and foxtail millet, respectively. However, rye treatment delayed heading by 12 days and 8 days in sorghum and foxtail millet, respectively. Besides he effect of cover crop on ear emergence of crops, the Besides changed growth-related characteristics. Plant height, chlorophyll content and chlorophyll fluorescence of sorghum ere increased in hairy vetch treatment by 46.4% 88.7% and 7.9%, respectively. In foxtail millet, the characteristics ere also increased by 45.6%, 50.9% and 37.8%, respectively, s compared to control. Yields of sorghum and foxtail millet were increased by 105.1% and 135% as compared o control by hairy vetch treatment, respectively. However, he yields of cereal crops were decreased by rye cover crop treatment, the yields of sorghum and foxtail millet were decreased by 25.8% and 119.1%, respectively. Rye cover crop treatment inhibited crop growth suggesting nitrogen starvation in rye treated plots. In rye treatment, plant height, chlorophyll contents and chlorophyll fluorescence of sorghum ere slightly decreased by 7.1%, 10.8% and 10.8%, respectively, as compared to control whereas the inhibitory effects were greater in foxtail millet. Weed occurrences based n weed number in hairy vetch and rye plots were reduced n weed number in hairy vetch and rye plots were reduced y 27% and 20%, respectively. The smothering effect was weakened or disappeared after heading of crops. Weed number and dry weight in hairy vetch plot were increased by 159% and 55.2%, respectively, as compared to control. The results implied that weed suppressing of cover crops could be reduced drastically after heading of crops.

Effect of Barley Green Manure on Rice Growth and Yield According to Tillage Date in Spring (녹비보리의 환원시기가 후작물 벼 생육 및 수량에 미치는 영향)

  • Kim, Min-Tae;Ku, Ja-Hwan;Jeon, Weon-Tai;Seong, Ki-Yeong;Park, Chang-Young;Ryu, Jin-Hee;Cho, Hyeoun-Suk;Oh, In-Seok;Lee, Yong-Hwan;Lee, Jong-Ki;Park, Man;Kang, Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.119-123
    • /
    • 2011
  • To use barley as a green manure crop, this study has been conducted in Suwon, Gyeonggi-do to establish the barley green manure (BGM)-rice cropping system with emphasis on soil incorporation date and BGM density. The nitrogen (N) contents of rye and barley, grass green manure crops, were 1.4~2.4% at early growth stage and decreased rapidly to 0.6~1.0% at late growth stage. The biomass of barley was 449 kg/l0a at heading stage (HS) and increased to 421 kg/10a at 10 days after heading stage (DAH), 473 kg/10a at 20 DAH. C/N ratio of BGM was the lowest 26.3 at HS. The N contents of BGM was in the range of 0.9~1.5%, the highest at HS and gradually decreased, and the output of N were 4.3-6.3 kg/10a. The total amount of nitrogen, phosphorous and potassium of BGM showed the highest level at 10 DAH. Culm length of rice was relatively longer as the BGM application time was delayed. The application of BGM into soil increased plant height of rice by 7.2~7.7 em as compared to the plants treated with commercial fertilizer at recommended rate. but panicle length of rice showed a similar tendency in both the soil-applied of BGM and commercial fertilizer. N contents of unhulled rice was the highest at HS of BGM and followed by 10 DAH of BGM and 20 DAH of BGM. This trend could also be seen in rice straw. The yield of rice in the soil-applied of BGM was 10~15% lower than in the soil-applied of commercial fertilizer. Based on this study, application of BGM made it possible to save 30~50% of application amount of nitrogen fertilizer for following crops.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Changes of Weed Community in Lowland Rice Field in Korea (한국(韓國)의 논 잡초분포(雜草分布) 현황(現況))

  • Park, K.H.;Oh, Y.J.;Ku, Y.C.;Kim, H.D.;Sa, J.K.;Park, J.S.;Kim, H.H.;Kwon, S.J.;Shin, H.R.;Kim, S.J.;Lee, B.J.;Ko, M.S.
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.254-261
    • /
    • 1995
  • The nationwide weed survey was conducted in lowland rice fields over whole country of Korea in 1992 in order to determine a change of weed community and to identify a major dominant weed species and/or problem weed. Based on morphological characteristics of weeds, population ratio of broad leaf weed was 42.6%, grasses weed-9.0%, sedges-33.4% and others were 15.0%. Annual weed was 33.4% while perennial weed was 66.6% in terms of life cycle of weeds. Meanwhile, there was different weed occurrence as affected by planting method of the rice plant. In hand transplanted paddy fields predominant weed species was Sagittaria trifolia L., Monochoria vaginalis Presl., and Aneilema japonica Kunth. In machine transplanted rice fields of infant and young rice seedling Eleocharis kuroguwai Ohwi. and S. trifolia L. were more predominant. There was high occurrence of M. vaginalis, Echinochloa crus-galli L., and Leesia japonica Makino in water seeding while E. crus-galli and Cyperus serotinus Rottb. were predominant weed species in dry seeded rice. Monoculture of the rice plant would cause to high occurrence of E. kuroguwai, S. trifolia, M. vaginalis, E. crus-galli, and Sagittaria pygmaea Miq and there was higher population of S. trifolia, S. pygmaea, M. vaginalis, E crus-galli, and E. kuroguwai in double cropping system based on rice culture. In particular, there was high different weed occurrence under different transplanting times. E. kuroguwai, S. trifolia, S. pygmaea, M. vaginalis, and C. serotinus were higher population at the transplanting of 25 May and S. trifolia, E crus-galli, C. serotinus, and M. vaginalis at 10 June and S. pygmaea, E. kuroguwai, M. vaginalis, S. trifolia, and E. crusgalli at 25 June in Korea, respectively. Autumn tillage in terms of tillage time would cause more predominant weed species such as S. trifolia, E. kuroguwai, M. vaginalis, and S. pygmaea while spring tillage was higher population of E. kuroguwai, S. trifolia, E. crusgalli, M. vaginalis, and S. pygmaea. In plain area of paddy field there was higher occurrence of E. kuroguwai, S. trifolia, M. vaginalis, E. crus-galli, and S. pygmaea and in mid-mountainous area S. trifolia, E. kuroguwai, M. vaginalis, E. crus-galli, and Ludwigia prostrate Roxb. while in mountainous area S. trifolia, M. vaginalis, Potamogeton distinctus Ben., E. kuroguwai, and E. crus-galli were. In 1992 the most ten predominant weed species at the rice field of Korea based on summed dominant ratio(SDR) were E. kuroguwai > S. trifolia > E. crus-galli > M. vaginalis > S. pygmaea > C. serotinus > L. prostrate > P. distinctus > A. japonica > Scirpus juncoides Roxb.

  • PDF

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF

No-tillage Agriculture of Korean-Type on Recycled Ridge I. Changes in Physical Properties : Soil Crack, Penetration Resistance, Drainage, and Capacity to Retain Water at Plastic Film Greenhouse Soil by Different Tillage System (두둑을 재활용한 한국형 무경운 농업 I. 경운방법에 따른 시설재배 토양의 물리적 특성: 균열, 관입저항, 배수, 보수력 변화)

  • Yang, Seung-Koo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.699-717
    • /
    • 2016
  • This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the growth of pepper plant and physical properties of soil under green house condition. 1. Degree of crack on soil by tillage and no-tillage Soil cracks found in ridge and not found in row. At five months of tillage, crack number and crack length in length ridge were 3 and 37~51 cm in tillage. Maximum width and maximum depth in length ridge were 30 mm and 15.3cm in tillage. Crack number and crack length in width ridge were 7.5 and 7~28 cm in tillage. Maximum width and maximum depth in width ridge were 29 mm and 15.3 cm in tillage. At a year of no-tillage, crack number and crack length in length ridge were 1.0 and 140~200 cm in tillage. Maximum width and maximum depth in length ridge were 18 mm and 30 cm in a year of no-tillage. Crack number and crack length in width ridge were 11 and 6~22 cm in a year of no-tillage. Maximum width and maximum depth in width ridge were 22 mm and 18.5 cm in a year of no-tillage. Soil crack was not found at 2 years of no-tillage in sandy Jungdong series (jd) soil. Soil crack was found at 7 years of no-tillage in clayish Jisan series (ji) soil. 2. Penetration resistance on soil Penetration resistance was increased significantly at no-tillage in Jungdong series (jd). Depth of cultivation layer was extended at no-tillage soil compared with tillage soil. Penetration resistance of plow pan was decreased at 1 year of no-tillage compared with than tillage soil. Penetration resistance was linearly increased with increasing soil depth at tillage in Jisan series (ji). Penetration resistance on top soil was remarkably increased and then maintained continuously at no-tillage soil. 3. Drainage and moisture content of soil Moisture content of ridge in top soil was not significant difference at both tillage and no-tillage. Moisture content of ridge in 20 cm soil was 14% at no-tillage soil and 25% at tillage soil. 4. Change of capacity to retain water in soil Capacity to retain water in top soil was not significant difference at 1 bar both tillage and no-tillage. Capacity to retain water in soil was slightly higher tendency in 1 year and 2 years of no-tillage soil than tillage soil. Capacity to retain water in soil was increased at 15 bar both tillage and no-tillage. Capacity to retain water in subsoil was slightly higher tendency at 1 bar and 3 bar in 2 years of no-tillage than tillage soil and a year of no-tillage soil.

Germination and Viability of Green Manure Crop Seeds Produced from Domestic and Foreign Countries (국내 채종 및 수입 녹비작물 종자의 발아 및 활력 특성 구명)

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Han, Sang-Ik;Seo, Woo-Duck;Jang, Ki-Chang;Na, Ji-Eun;Lee, Jong-Hee;Cho, Jun-Hyeon;Lee, Ji-Yoon;Choi, Kyung-Jin;Song, You-Chun;Yeo, Un-Sang;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.308-314
    • /
    • 2011
  • Seed germination and dormancy of three green manure seeds such as hairy vetch, crimson clover and narrow-leaved vetch (Vicia angustifolia L.) produced in Milyang, southern part of Korea were investigated to provide a basic information on the stability of seedling establishment in green manure seeds. In addition, the effect of seed storage duration on the germinability of imported hairy vetch and crimson seeds was also investigated. To determine the seed maturity time of three green manure seeds, the seeds were harvested manually at May 25, May 30, and June 4, and the 100-seed weight, germinability and percentage of hard seed were evaluated. Freshly harvested seeds of three green manure crops were strongly dormant because of hard seed coat. Germination percentage of the three green manure crops varied depending on the seed harvest time ranging from 30 - 52% in hairy vetch, 16 - 35% in crimson clover and 2 - 61% in V. angustifolia, respectively. Of the three crops, crimson clover and V. angustifolia matured early on May 30 to June 4 (around 35 to 40 days after flower) but hairy vetch seed did not mature until June 4 based on the seed germinability. The matured seed of crimson clover and V. angustifolia germinated less than 20% while scarification on seed coat significantly overcome the innate dormancy. On the other hand, the seed germination of hairy vetch and crimson clover was lower under dark than in the presence of light. The germination percentage of the imported hairy vetch and crimson clover seeds showed high with 77 - 79%, 94 - 95%, respectively, but the seed germination significantly declined by 21 - 32%, 30 - 40% after one-year of storage under natural conditions. The seeds germinated only 8 - 13% for hairy vetch but crimson clover did not germinate at all after two years storage. These results indicate V. angustifolia and crimson clover mature at May 30 to June 4 but hairy vetch did not. The imported hairy vetch and crimson clover seeds should be used within one-year after import for stable seedling establishment in green manure-rice cultivation cropping system.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Effect of Low Temperature Treatment of Seed Bulb and Planting Date on Plant Growth and Yield in Garlic (마늘의 파종기별(播種期別) 저온처리(低溫處理)의 차이(差異)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Shin, Seong Lyon;Lee, Woo Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.49-69
    • /
    • 1988
  • In order to develop a cropping system that can produce garlic in the period of short supply from March to April, effects of low temperature treatment of seed bulbs and planting dates, starting date of low temperature treatment, days of low temperature treatment on plant growth, maturity and yield were studied in Southern strain, 'Namhae' and in Northern strain, 'Euiseong' of garlic (Allium sativum). The results obtained were as follows. In Sorthern strain, sprouting was significantly enhanced by low temperature treatment only in Sep. 14, and Sep. 29 plantings. Days to sprout were least in 30 days of low temperature treatment of Sep. 14 planting and in 45 days treatment of Sep. 29 planting. When considering on the beginning date of low temperature treatment, a marked difference was observed between treatments started before July 31 and after Aug. 15. Sprouting was most enhanced in 45 days low temperature treatment of Aug. 15 and Aug. 30 plantings. In Northern strain, sprouting was en hanced by low temperature treatment in planting from Sep. 29 to Nov. 13 and low temperature treatment for 60 days was most effective. Effect of low temperature treatment on early plant growth was observed in Sep. 14 and Sep. 29 plantings, but the effect on plant growth at intermediate stage or thereafter was observed in up to Oct. 29 plantings. Optimun days for low temperature treatment on growth enhancement was 45 and 60 days in Southern strain and 60 days in Northern strain in each planting dates. In Southern strain, the longer the low temperature treatment and the later the planting date the less the number of leaves developed. In Northern strain, normal leaves were not developed in plantings from Sep. 14 to Nov. 13. In Southern strain, clove differentiation and bulbing were earlist in 45 and 60 days treatment of Sep. 14, Sep. 29, and Oct. 14 planting initiated on July 31 and Aug. 15. In Northern strain, clove differentiation and bulbing were earlist in 60 days treatment of Oct. 14 planting initiated on Aug. 15 and Aug. 30. In treatment initiated later than above, longer the low temperature treatment the earlier the clove differentiation and bulbing in both Southern and Northern strains. The earlier the initiation date and the longer of low temperature treatment, the earlier bolting in southern strain. In Northern strain, bolting was most enhanced in 45 and 60 days of low temperature treatment initiated on Aug. 15 and Aug. 30. The longer the low temperature treatment in plantings thereafter, the earlier the bolting. The earlier the planting date garlic bulbs. Harvest date was earliest in 45 and 60 days low temperature treatment started from July 31 to Aug. 30 in Southern strain, and it was in 60 and 90 days low temperature treatment initiated from July 31 to Aug. 30 in Northern strain. Bulb weight was heaviest in 45 days low temperature treatment of Oct. 14 planting and next was in 45 days treatment of Sep. 29 planting in Southern strain. In Northern strain, bulb weight was heaviest in 60 days treatment of Oct. 14 planting and next was in 45 days treatment of Oct. 14 planting. When considered in the aspect of the beginning date of low temperature treatment, bulb weight was heaviest in 45 days treatment started on Aug. 30 in Southern strain and in 60 days treatment started on Aug. 15 in Northern strain. A high negative correlation between days to harvest and plant height on January 12, and a high positive correlation between days to harvest and days clove differentiation were observed. This indicates that enhanced plant growth and clove differentiation induced by low temperature treatment advanced the harvest date. A high negative correlation between bulb weight and days to clove differentiation, days to harvest suggests that the enhanced clove differentiation result and in heavier bulb weight. From the above results, it suggested that early crop of garlic can be harvested by planting at the period of Sep. 29 to Oct. 14 after 45 days of low temperature treatment of seed bulbs of Southern strain. Then harvest date can be shortened by 30 days compared to control and garlic can be harvested in early April.

  • PDF