• Title, Summary, Keyword: Creation Tool

Search Result 255, Processing Time 0.046 seconds

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

A Study on Perceived Quality affecting the Service Personal Value in the On-off line Channel - Focusing on the moderate effect of the need for cognition - (온.오프라인 채널에서 지각된 품질이 서비스의 개인가치에 미치는 영향에 관한 연구 -인지욕구의 조정효과를 중심으로-)

  • Sung, Hyung-Suk
    • Journal of Distribution Research
    • /
    • v.15 no.3
    • /
    • pp.111-137
    • /
    • 2010
  • The basic purpose of this study is to investigate perceived quality and service personal value affecting the result of long-term relationship between service buyers and suppliers. This research presented a constructive model(perceived quality affecting the service personal value and the moderate effect of NFC) in the on off line and then propose the research model base on prior researches and studies about relationships among components of service. Data were gathered from respondents who visit at the education service market. For this study, Data were analyzed by AMOS 7.0. We integrate the literature on services marketing with researches on personal values and perceived quality. The SERPVAL scale presented here allows for the creation of a common ground for assessing service personal values, giving a clear understanding of the key value dimensions behind service choice and usage. It will lead to a focus of future research in services marketing, extending knowledge in the field and stimulating further empirical research on service personal values. At the managerial level, as a tool the SERPVAL scale should allow practitioners to evaluate and improve the value of a service, and consequently, to define strategies and actions to address services for customers based on their fundamental personal values. Through qualitative and empirical research, we find that the service quality construct conforms to the structure of a second-order factor model that ties service quality perceptions to distinct and actionable dimensions: outcome, interaction, and environmental quality. In turn, each has two subdimensions that define the basis of service quality perceptions. The authors further suggest that for each of these subdimensions to contribute to improved service quality perceptions, the quality received by consumers must be perceived to be reliable, responsive, and empathetic. Although the service personal value may be found in researches that explore individual values and their consequences for consumer behavior, there is no established operationalization of a SERPVAL scale. The inexistence of an established scale, duly adapted in order to understand and analyze personal values behind services usage, exposes the need of a measurement scale with such a purpose. This need has to be rooted, however, in a conceptualization of the construct being scaled. Service personal values can be defined as a customer's overall assessment of the use of a service based on the perception of what is achieved in terms of his own personal values. As consumer behaviors serve to show an individual's values, the use of a service can also be a way to fulfill and demonstrate consumers'personal values. In this sense, a service can provide more to the customer than its concrete and abstract attributes at both the attribute and the quality levels, and more than its functional consequences at the value level. Both values and services literatures agree, that personal value is the highest-level concept, followed by instrumental values, attitudes and finally by product attributes. Purchasing behaviors are agreed to be the end result of these concepts' interaction, with personal values taking a major role in the final decision process. From both consumers' and practitioners' perspectives, values are extremely relevant, as they are desirable goals that serve as guiding principles in people's lives. While building on previous research, we propose to assess service personal values through three broad groups of individual dimensions; at the self-oriented level, we use (1) service value to peaceful life (SVPL) and, at the social-oriented level, we use (2) service value to social recognition (SVSR), and (3) service value to social integration (SVSI). Service value to peaceful life is our first dimension. This dimension emerged as a combination of values coming from the RVS scale, a scale built specifically to assess general individual values. If a service promotes a pleasurable life, brings or improves tranquility, safety and harmony, then its user recognizes the value of this service. Generally, this service can improve the user's pleasure of life, since it protects or defends the consumer from threats to life or pressures on it. While building upon both the LOV scale, a scale built specifically to assess consumer values, and the RVS scale for individual values, we develop the other two dimensions: SVSR and SVSI. The roles of social recognition and social integration to improve service personal value have been seriously neglected. Social recognition derives its outcome utility from its predictive utility. When applying this underlying belief to our second dimension, SVSR, we assume that people use a service while taking into consideration the content of what is delivered. Individuals consider whether the service aids in gaining respect from others, social recognition and status, as well as whether it allows achieving a more fulfilled and stimulating life, which might then be revealed to others. People also tend to engage in behavior that receives social recognition and to avoid behavior that leads to social disapproval, and this contributes to an individual's social integration. This leads us to the third dimension, SVSI, which is based on the fact that if the consumer perceives that a service strengthens friendships, provides the possibility of becoming more integrated in the group, or promotes better relationships at the social, professional or family levels, then the service will contribute to social integration, and naturally the individual will recognize personal value in the service. Most of the research in business values deals with individual values. However, to our knowledge, no study has dealt with assessing overall personal values as well as their dimensions in a service context. Our final results show that the scales adapted from the Schwartz list were excluded. A possible explanation is that although Schwartz builds on Rokeach work in order to explore individual values, its dimensions might be especially focused on analyzing societal values. As we are looking for individual dimensions, this might explain why the values inspired by the Schwartz list were excluded from the model. The hierarchical structure of the final scale presented in this paper also presents theoretical implications. Although we cannot claim to definitively capture the dimensions of service personal values, we believe that we come close to capturing these overall evaluations because the second-order factor extracts the underlying commonality among dimensions. In addition to obtaining respondents' evaluations of the dimensions, the second-order factor model captures the common variance among these dimensions, reflecting the respondents' overall assessment of service personal values. Towards this fact, we expect that the service personal values conceptualization and measurement scale presented here contributes to both business values literature and the service marketing field, allowing for the delineation of strategies for adding value to services. This new scale also presents managerial implications. The SERPVAL dimensions give some guidance on how to better pursue a highly service-oriented business strategy. Indeed, the SERPVAL scale can be used for benchmarking purposes, as this scale can be used to identify whether or not a firms' marketing strategies are consistent with consumers' expectations. Managerial assessment of the personal values of a service might be extremely important because it allows managers to better understand what customers want or value. Thus, this scale allows us to identify what services are really valuable to the final consumer; providing knowledge for making choices regarding which services to include. Traditional approaches have focused their attention on service attributes (as quality) and service consequences(as service value), but personal values may be an important set of variables to be considered in understanding what attracts consumers to a certain service. By using the SERPVAL scale to assess the personal values associated with a services usage, managers may better understand the reasons behind services' usage, so that they may handle them more efficiently. While testing nomological validity, our empirical findings demonstrate that the three SERPVAL dimensions are positively and significantly associated with satisfaction. Additionally, while service value to social integration is related only with loyalty, service value to peaceful life is associated with both loyalty and repurchase intent. It is also interesting and surprising that service value to social recognition appears not to be significantly linked with loyalty and repurchase intent. A possible explanation is that no mobile service provider has yet emerged in the market as a luxury provider. All of the Portuguese providers are still trying to capture market share by means of low-end pricing. This research has implications for consumers as well. As more companies seek to build relationships with their customers, consumers are easily able to examine whether these relationships provide real value or not to their own lives. The selection of a strategy for a particular service depends on its customers' personal values. Being highly customer-oriented means having a strong commitment to customers, trying to create customer value and understanding customer needs. Enhancing service distinctiveness in order to provide a peaceful life, increase social recognition and gain a better social integration are all possible strategies that companies may pursue, but the one to pursue depends on the outstanding personal values held by the service customers. Data were gathered from 284 respondents in the korean discount store and online shopping mall market. This research proposed 3 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the 6 paths of research model and the overall fitting level of structural equation model. and the result was successful. and Perceived quality more positively influences service personal value when NFC is high than when no NFC is low in the off-line market. The results of the study indicate that service quality is properly modeled as an antecedent of service personal value. We consider the research and managerial implications of the study and its limitations. In sum, by knowing the dimensions a consumer takes into account when choosing a service, a better understanding of purchasing behaviors may be realized, guiding managers toward customers expectations. By defining strategies and actions that address potential problems with the service personal values, managers might ultimately influence their firm's performance. we expect to contribute to both business values and service marketing literatures through the development of the service personal value. At a time when marketing researchers are challenged to provide research with practical implications, it is also believed that this framework may be used by managers to pursue service-oriented business strategies while taking into consideration what customers value.

  • PDF