• Title, Summary, Keyword: Compost maturity

Search Result 57, Processing Time 0.051 seconds

Effect of Liquid Pig Manure and Synthetic Fertilizer on Rice Growth, Yield, and Quality (벼 생육, 수량과 품질에 대한 돈분액비와 화학비료 시용 효과)

  • Kwon, Young-Rip;Kim, Ju;Ahn, Byung-Koo;Lee, Sang-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • We have researched the changes in nutrient content in each phase of fermentation in crops treated with liquefied pig fertilizer, and have determined the best method for applying livestock excrement to cultured crops. In the execution of this experiment, rice was cultivated to full maturity at a paddy field in Jeollabuk-Do Agriculture Research and Extension Services(Jeon-buk series) from 2007 to 2008. The rice plant nitrogen absorption quantity change, according to the growth stages of the cultivated rice, was 20.3% in the rice treated with the liquid pig manure and 22.2% the chemical fertilizer at highest congelation. The chemical fertilizer showed a higher absorption quantity than the liquid manure compost. The nitrogen density at highest congelation was 1.5% in the chemical fertilizer, and 1.8% in the pig manure liquid compost not a significant difference. The stem height at harvest time was 73.8 cm in the crops treated with the liquid pig manure compost. Those treated with the chemical fertilizer, yielded a height of 4.2 cm less than the crops treated with the liquid pig manure compost. The yield was 507 kg/10a in the liquid pig manure compost treated rice, compared with the chemical fertilizer, which showed a value of 1.2% lower. The protein content was 6.3% in the rice treated with the chemical fertilizer, but 6.4% in the rice treated with the liquid pig manure compost. This is not a significant difference. However, the lodging rice plant treated with the chemical fertilizer control showed a protein content of 6.8%, which was even higher than the normal rice. The head rice ratio in the brown rice and the polished rice ended up to be lower in the crop treated with the liquid pig manure than that treated with the chemical fertilizer, Quality, the palatability value, was similar in both groups. The above result indicate that, the effect of liquid pig manure compost corresponds to the effect of chemical fertilizer, when each are scattered uniformly.

Performance Characteristics of Agitated Bed Manure Composting and Ammonia Removal from Composting Using Sawdust Biofiltration System (교반식 축분 퇴비화 및 톱밥 탈취처리 시스템의 퇴비화 암모니아 제거 성능)

  • Hong, J.H.;Park, K.J.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Sawdust biofiltration is an emerging bio-technology for control of ammonia emissions including compost odors from composting of biological wastes. Although sawdust is widely used as a medium for bulking agent in composting system and for microbial attachment in biofiltration systems, the performance of agitated bed composting and sawdust biofiltration are not well established. A pilot-scale composting of hog manure amended with sawdust and sawdust biofiltration systems for practical operation were investigated using aerated and agitated rectangular reactor with compost turner and sawdust biofilter operated under controlled conditions, each with a working capacity of approximately $40m^3\;and\;4.5m^3$ respectively. These were used to investigate the effect of compost temperature, seed germination rate and the C/N ratio of the compost on ammonia emissions, compost maturity and sawdust biofiltration performance. Temperature profiles showed that the material in three runs had been reached to temperature of 55 to $65^{\circ}C$ and above. The ammonia concentration in the exhaust gas of the sawdust biofilter media was below the maximum average value as 45 ppm. Seed germination rate levels of final compost was maintained from 70 to 93% and EC values of the finished compost varied between 2.8 and 4.8 ds/m, providing adequate conditions for plant growth.

  • PDF

Assays of Maturity and Antifungal Activity against Plant Pathogen during the Animal Manure Composting Process (가축분 퇴비화 과정에서 부숙도 및 퇴비의 항균활성 검정)

  • Seo, Myung-Chul;So, Kyu-Ho;Park, Won-Mok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.285-294
    • /
    • 1999
  • Changes of chemico-physical properties and mturitiy during pig manure composting were analysed using three kinds of bulking agents with rice hull(T1), rice hull and extruding hull mixture (T2, 1:1, v/v), and extruding hull(T3). During composting process, temperature of T1, T2 and T3 were maintained over $50^{\circ}C$ for 31, 21, and 35 days respectively. Organic matter content of each treatment was decreased from 82.2%, 82.0%, and 82.8% to 70.5%, 68.9% and 69.7% and pH increased to 8.85, 9.91, and 8.80, respectively. Total nitrogen content of all treatments gradually decreased, but C/N ratio, phosphorous, and potassium content did not, show any changes during composting process. Both germination rate and early growth were tested using radish seeds for composting maturity. From those results, it was concluded that all treatments were stabilized after 45th day and extruding hull(T3) added compost was superior to others. The test of suppressive effect showed that all treatment have no effect against Fusarium oxysporum, Alternaria altemata, Botrytis cinerea. Compost supplemented with rice hull showed an inhibitory effect after 30th days, while compost supplemented with rice hull and extruding hull(T2) had an inhibitory effect during all period against Rhizoctonia solani. But treatment with extruding hull(T3) added compost did not have any inhibitory effect against Rhizoctonia solani. Only 63th samples in T1 and T2 treatment showed inhibitory effect against Colletoerichum gloeosporioides. However, T3 did not. Suppressive effect of extracts from 67 kinds of composts was investigated in vitro against plant pathogens, such as Fusauum oxysporum. Alternaria alternata, Colletotrichum gloeospoioides, Rhizoctonia solani, and Botrytis cinerea. Thirty two of them showed inhibitory effect against more than one phytopathogen, nine against one pathogen, four against two, six against three, six against four, and seven against five.

  • PDF

The Succession of Microbial Populations and Variation of Enzyme Activities in Composting of Apple Pomace (사과박 퇴비화에서의 미생물군집의 천이와 효소활성도의 변화)

  • Lee, Yong-Ok;Jo, Ik-Hwan;Lee, Yong-Se;Jun, Ha-Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.73-82
    • /
    • 1999
  • To verify the usefulness of enzyme activity as a index for the stability or maturity of apple pomace composting. the succession of microbial populations using viable count procedure. and Vmax of ${\beta}$-glucosidase and cellobiohydrolase were measured. based on an increase in fluorescence as the nonfluorescent methylumbelliferyl substrates were enzymatically hydrolyzed, leading to the highly fluorescent methylumbelliferyl molecule 4-methylumbelliferone(MUF). The activities of these enzymes in the decomposition of carbohydrates were gradually decreased in the course of the time. Correlation between microbial population and enzyme activity was not significant with exception of fungi. and the fungi were represented in high density. This indicates that the fungi probably play a major role in composting of apple pomace.

  • PDF

Analysis and Improvement Measures on the Status of the Installation and Operation of Facilities for Recycling Food Waste into Compost (음식물쓰레기 퇴비화시설의 설치 및 운영 현황분석 및 개선방안)

  • Ryu, Ji-Young;Kong, Kyu-Sik;Shin, Dae-Yewn;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.95-111
    • /
    • 2004
  • This research sought to determine the status of the installation and operation of composting facilities of domestic public resource-making facilities and come up with corresponding improvement measures. The composting facilities were the most extensively installed of related facilities with over a 0.5 ton treated volume per day. The monthly and yearly carry-in volume of food waste were found to stand at 1,101.7 tons per day and 930.9 tons per day, thus falling short of the average planned volume of 1,270.9 tons. Many composting facilities, which were installed in areas for which factory registration were not approved, did not get approvals. Composting facilities underwent operation stoppage mainly due to faulty fermentation and crushing equipment. Mainly metals contained in food waste caused faults to the crushing equipment, thus requiring a facility designing against faults and corrosion. The initial water content was found to stand at 50-60%, thus complying with the requirement. However, since the composting food waste had an appropriate mixture of sawdust, food waste, and returned compost, it should meet the initial conditions. For fermentation facilities, the duration time for fermentation was 15 days, and post-fermentation tanks required 21 days of duration time, thus establishing the minimum criteria. However, some facilities did not meet the requirements, taking more time in decomposition, thus suggesting a need to determine the duration time according to facilities. In composting food waste, microorganism-based thermal oxidizer-operated fermentation tanks should be used to ensure an economic operation. On the contrary, 14 out of 25 survey targets heated fermentation tanks in any form. These thermal facilities contain the growth of bacteria, lowering chemical reaction in composting; thus composting facilities should be basically designed to use microorganism-based thermal oxidizers in drying water. An average daily volume of food waste and supplementary materials that was injected in producing compost was 22.8 tons. This volume produced 7.3 tons of compost per day, decreasing 68%. Properties of produced compost were analyzed by its color, absence or presence of remaining decomposition heat, and smell, to assess the quality. As a result, the composting process was not properly installed nor operated in about 50% of composting facilities. Compost should be produced to be soil-friendly.

  • PDF

Changes of Physicochemical Properties of Paper Mill Sludge and Sewage Sludge Mixed with Various Ratios of a Bulking Agent During Composting (공극개선재의 혼합비율에 따른 제지·하수슬러지의 퇴비화과정중 이화학성 변화)

  • Yu, Young-Suk;Chang, Ki-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.45-57
    • /
    • 1998
  • The object of this experiment was to determine the optimum mixing ratio of paper mill sludge and sewage sludge with woodchips as a bulking agent. The bulking agent was mixed with the mixture of paper mill sludge and sewage sludge(2:1 by dried weight) at the rates of 0(W-0), 20(W-20), 33(W-33), and 50(W-50)% on volume basis, and then the mixtures were composted by forced aerated static pile. The changes of physicochemical properties of the mixtures were measured during the composting in order to evaluate the maturity of composts. The temperatures of W-30 and W-50 treatments increased rapidly as soon as the composting started, and reached $60^{\circ}C$ in the fifth day of composting. Reduction of hot water soluble C/N ratio of W-33 and W-50 treatments showed faster than that of W-0 and W-20 treatments at early stage of the composting. The contents of hot water soluble $NO_3{^-}-N$ showed little change in the early stage of the composting in all treatments, but increased rapidly after 20 days of the composting, and the contents of W-0 among all treatments were lower than the others. The G.I. values of W-50 treatment were over 80 before 20 days after starting the composting, those of W-0 treatment were over 80 after 30 days. As a result of evaluation of compost, W-33 and W-50 treatments were found very reasonable at the mixing ratio of a bulking agent. But it is very difficult to aerate compost pile for W-50 treatment than W-33 treatment due to intensified fluctuation of temperature. Considering cost, availability of a bulking agent, and productivity of compost, W-33 treatments more efficient than W-50 treatment.

  • PDF

Distribution of Habitats and Ecology of Weedy Melons (Cucumis melo var. agrestis Naud.) in Korea (우리나라 야생잡초 참외의 자생지 분포지역 및 생태)

  • Lee, Woo-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.652-655
    • /
    • 2013
  • Natural habitats of weedy melons were distributed on the islands along and on the west and south coasts of Korean peninsula including Boryeong, Seosan (Taean), Seocheon, Okgu, Buan, Gochang, Yeonggwang, Muan, Shinan, Haenam, Jindo, Wando, Goheung, Yeocheon, Hadong, Namhae, Goseong, Tongyeong, Geoje, and Jeju islands including Jeju city, Bukjeju-gun and Nam Jeju-gun. Weedy melons were found growing wildly in or around the cultivated lands in these regions. Natural habitats of weedy melons were in and around the cultivated lands. Weedy melon plants were found most often in soybean fields, followed by fields of mungbean, sweet potato, pepper, sesame, cotton, and peanuts. The plants were also found growing wild in foxtail millet fields, rice paddy levees along the streams, upland field edges, watermelon fields, corn fields, vegetable gardens near farmhouse, orange fields, compost piles, fallow fields, roadside and home gardens. They inhabited in sunny and a little dry spaces in relatively low-height crop plant fields in general. The time of fruit maturity was from early July to late October with the most frequency in September according to post survey answer. Fruits dropped off from the fruit stalk when matured. This phenomenon was thought beneficial for perpetuation in the wild. The fruits were being used commonly for food and toys for children. It was thought that weedy melons were perpetuating through the cycle of human and animal feeding of the fruits, human and animal droppings, often mixed in compost, and application of the compost to crop fields by human.

A Comparative Study on Correlation Through Physiochemical Property Comparision of Livestock Liquid Fertilizer (가축분뇨 액비의 이화학적 특성비교를 통한 상관성 비교연구)

  • Jeon, Sang-Joon;Kim, Soo-Ryang;Hong, In-Gi;Kim, Ha-Je;Kim, Dong-Gyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.163-168
    • /
    • 2013
  • Today, a desirable way to manage livestock manure is to activate its utilization as a resource. The production of high quality liquid fertilizer of livestock manure is very important because it increases the use of various liquid fertilizer. However, the result of mature evaluation with a maturity measuring instrument for liquid fertilizer showed that the deviation of concentration between liquid fertilizer did not bring into uniformity. The result is also making sure that quality management for liquid fertilizer is not smoothly made. Quality evaluation for compost and liquid fertilizer includes physical, biological, chemical and microbiological methods, but a chemical method is mainly being implemented due to fairness and field application. Therefore, this study figured out correlation in feces and urine through regression analysis of livestock manure and tried to create a research plan to carry out efficient quality analysis of managing livestock manure.

Evaluation of Composting Characteristics According to the Air Supply Change in Farm-Sized Swine Manure (농가규모 양돈분뇨 퇴비화시 공기공급량 변화에 따른 퇴비 특성 평가)

  • Lee, Sunghyoun;Jeong, Gwanghwa;Lee, Dongjun;Lee, Donghyeon;Jang, Yuna;Kwag, Junghoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.49-61
    • /
    • 2019
  • Swine manure has been recognized as a organic sources for composting and many research was conducted to efficiently utilize and treat. This study was to evaluate a feasibility for producing swine manure compost under various treatment with mixture of swine manure and saw dust. Treatments were designed as follows; non aerated composting pile(REF), aerated composting pile of $100L/m^3$(EXP1), and aerated composting pile of $150L/m^3$(EXP2). The total days of fermentation were 28 days and each samples were collected at every 7 days from starting of composting. Temperature sensors were installed under 30~40cm from the surface of composting pile. Inner temperature in composting piles of EXP1 and EXP2 was rapidly increased to $67{\sim}75^{\circ}C$ within 1~2 days. The elevated temperatures found during the thermophilic phase are essential for rapid degradation of organic materials. While swine manure composted, moisture content, total nitrogen, EC of EXP1, EXP2 in sample at 28 days were lower than those of REF. But, pH and organic matter of EXP1, EXP2 in sample at 28 days were higher than those of REF. After finishing fermentation experiment, maturity was evaluated with germination test. Calculated germination index(GI) at REF, EXP1 and EXP2 were 23.49, 68.50 and 51.81, respectively. The values of germination index were higher at EXP1 and EXP2 which is aerated composting piles than REF which is non aerated composting pile. According to the results, composting process by aerated static pile compost had significant effect on the reduction of required period for composting. Supplying adequate amount of air to compost swine manure will greatly reduce composting period.

Changes of Microbial Activity and Physicochemical Environment during Composting of Papermill Sludge in a Pilot Plant (제지슬럿지의 퇴비화 과정 중 미생물활성 및 이화학적 환경변화)

  • Chung, Young-Ryun;Chung, Man-Hoon;Han, Shin-Ho;Oh, Say-Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.79-89
    • /
    • 1995
  • Changes of microbial activity and physicochemical environment during composting of papermill sludge(PMS) in the pilot plant equipped with an agitated bed reactor were monitored for establishing the efficient composting system. Microbial activity determined as the evolution of $CO_2$ increased for the first 10 days after introduction of PMS to the reactor and decreased thereafter. Population changes of microorganisms in the reactor-PMS were not typical as in windrow system. The ratio of thermophilic bacteria to mesophilic bacteria, however, increased slowly even 23 days after introduction. Temperature of PMS increased rapidly from the first day and reached $62^{\circ}C$ at 7 days after introduction and decreased slowly thereafter. The acidity of PMS was pH 6.8 initially, increased to pH 8.0 after 7 days and decreased to pH 7.4 after 23 days. Redox potential(Eh) of PMS was -320mV at the beginning of composting, but it was increased with time to reach -15mV after 23 days composting. However, Eh of PMS pre-sterilized before measurement was average 50mV, regardless of composting periods indicating the major role of microorganisms during composting process. Water content of PMS was 67% initially and decreased to about 50% after 23 days composting in the reactor. Less than 13 days-old compost inhibited growth of radish in the container mixture with bed soil. Based on statistical analysis of microbial and physicochemical parameters of PMS during composting, an equation was developed for determining compost maturity. A number of experiments using various organic wastes are required before application of the formular to the practical use.

  • PDF