• Title/Summary/Keyword: Color Image

Search Result 871, Processing Time 0.14 seconds

A New Demosaicking Algorithm for Honeycomb CFA CCD by Utilizing Color Filter Characteristics (Honeycomb CFA 구조를 갖는 CCD 이미지센서의 필터특성을 고려한 디모자이킹 알고리즘의 개발 및 검증)

  • Seo, Joo-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.62-70
    • /
    • 2011
  • Nowadays image sensor is an essential component in many multimedia devices, and it is covered by a color filter array to filter out specific color components at each pixel. We need a certain algorithm to combine those color components reconstructed a full color image from incomplete color samples output from an image sensor, which is called a demosaicking process. Most existing demosaicking algorithms are developed for ideal image sensors, but they do not work well for the practical cases because of dissimilar characteristics of each sensor. In this paper, we propose a new demosaicking algorithm in which the color filter characteristics are fully utilized to generate a good image. To demonstrate significance of our algorithm, we used a commerically available sensor, CBN385B, which is a sort of Honeycomb-style CFA(Color Filter Array) CCD image sensor. As a performance metric of the algorithm, PSNR(Peak Signal to Noise Ratio) and RGB distribution of the output image are used. We first implemented our algorithm in C-language for simulation on various input images. As a result, we could obtain much enhanced images whose PSNR was improved by 4~8 dB compared to the commonly idealized approaches, and we also could remove the inclined red property which was an unique characteristics of the image sensor(CBN385B).Then we implemented it in hardware to overcome its problem of computational complexity which made it operate slow in software. The hardware was verified on Spartan-3E FPGA(Field Programable Gate Array) to give almost the same performance as software, but in much faster execution time. The total logic gate count is 45K, and it handles 25 image frmaes per second.

A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts (컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘)

  • Yoo, Du Sic;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.205-215
    • /
    • 2013
  • In digital imaging system, Bayer pattern is widely used and the observed image is degraded by optical blur during image acquisition process. Generally, demosaicing and deblurring process are separately performed in order to convert a blurred Bayer image to a high resolution color image. However, the demosaicing process often generates visible artifacts such as zipper effect and Moire artifacts when performing interpolation across edge direction in Bayer pattern image. These artifacts are emphasized by the deblurring process. In order to solve this problem, this paper proposes a deblurring algorithm combined with edge directional color demosaicing method. The proposed method is consisted of interpolation step and region classification step. Interpolation and deblurring are simultaneously performed according to horizontal and vertical directions, respectively during the interpolation step. In the region classification step, characteristics of local regions are determined at each pixel position and the directionally obtained values are region adaptively fused. Also, the proposed method uses blur model based on wave optics and deblurring filter is calculated by using estimated characteristics of local regions. The simulation results show that the proposed deblurring algorithm prevents the boosting of artifacts and outperforms conventional approaches in both objective and subjective terms.

Spatial Integration of Multiple Data Sets regarding Geological Lineaments using Fuzzy Set Operation (퍼지집합연산을 통한 다중 지질학적 선구조 관련자료의 공간통합)

  • 이기원;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • Features of geological lineaments generally play an important role at the data interpretation concerned geological processes, mineral exploration or natural hazard risk estimation. However, there are intrinsically discordances between lineaments-related features extracted from surficial geological syrvey and those from satellite imagery;nevertheless, any data set contained those information should not be considred as less meaningful within their own task. For the purpose of effective utilization task of extracted lineaments, the mathematical scheme, based on fuzzy set theory, for practical integration of various types of rasterized data sets is studied. As a real application, the geological map named Homyeong sheet(1:50,000) and the Landset TM imageries covering same area were used, and then lineaments-related data sets such as lineaments on the geological map, lineaments extracted from a false-color image composite satellite, and major drainage pattern were utilized. For data fusion process, fuzzy membership functions of pixel values in each data set were experimentally assigned by percentile, and then fuzzy algebraic sum operator was tested. As a result, integrated lineaments by this well-known operator are regarded as newly-generated reasonable ones. Conclusively, it was thought that the implementation within available GISs, or the stand-alone module for general applications of this simple scheme can be utilized as an effective scheme can be utilized as an effective scheme for further studies for spatial integration task for providing decision-supporting information, or as a kind of spatial reasoning scheme.

Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea (인공위성 고도계 자료와 해색 위성 자료 기반의 동해 중규모 소용돌이 탐지 비교)

  • PARK, JI-EUN;PARK, KYUNG-AE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.282-297
    • /
    • 2019
  • Detection of mesoscale oceanic eddies using satellite data can utilize various ocean parameters such as sea surface temperature (SST), chlorophyll-a pigment concentration in phytoplankton, and sea level altimetry measurements. Observation methods vary for each satellite dataset, as it is obtained using different temporal and spatial resolution, and optimized data processing. Different detection results can be derived for the same oceanic eddies; therefore, fundamental research on eddy detection using satellite data is required. In this study, we used ocean color satellite data, sea level altimetry data, and infrared SST data to detect mesoscale eddies in the East Sea and compared results from different detection methods. The sea surface current field derived from the consecutive ocean color chlorophyll-a concentration images using the maximum cross correlation coefficient and the geostrophic current field obtained from the sea level altimetry data were used to detect the mesoscale eddies in the East Sea. In order to compare the eddy detection from satellite data, the results were divided into three cases as follows: 1) the eddy was detected in both the ocean color and altimeter images simultaneously; 2) the eddy was detected from ocean color and SST images, but no eddy was detected in the altimeter data; 3) the eddy was not detected in ocean color image, while the altimeter data detected the eddy. Through these three cases, we described the difficulties with satellite altimetry data and the limitations of ocean color and infrared SST data for eddy detection. It was also emphasized that study on eddy detection and related research required an in-depth understanding of the mesoscale oceanic phenomenon and the principles of satellite observation.

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

A Study on A Deep Learning Algorithm to Predict Printed Spot Colors (딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구)

  • Jun, Su Hyeon;Park, Jae Sang;Tae, Hyun Chul
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

A Study on Partially Applied Color Image in Black and White Moving Imagery (흑백영상의 부분 색채화에 관한 연구)

  • Yeo, Myoung;Kim, Ji-Hong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.322-326
    • /
    • 2006
  • Though human being has ability to percept a full colored vision, the technology of early photography only can produce black and white images. For cinema filming imagery also captured mono tone with black and white, until developed a color film technology. The desire for presenting color imagery and the technique for producing film and color ink, photography and print utilize color on it with noticeable color impact to viewers. It, however, abusing fun colors image each and every printed and filmed imagery, the freshness of eye catching power diminished now. On contrast, color becomes black and white or partially used for making discrepancy among full colored images. This image detected commercial and music video, and it spread to film. To use those bleached color images is for evoking a nostalgia and a visual differentiation. Especially, it can be provocative images brought to audience with that. such as "Anycall", "Dimchae" for CF, and "Schindler's list," and "Sin city" for movie. It is hard to investigate on the color studies for partially used images. Therefore, this study is to research that through CF and film, base on it, to investigate the application for this image. To collect data from survey, it will be established a basic concept for understanding the partial color applying.

  • PDF

Automatic Text Extraction from News Video using Morphology and Text Shape (형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출)

  • Jang, In-Young;Ko, Byoung-Chul;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.479-488
    • /
    • 2002
  • In recent years the amount of digital video used has risen dramatically to keep pace with the increasing use of the Internet and consequently an automated method is needed for indexing digital video databases. Textual information, both superimposed and embedded scene texts, appearing in a digital video can be a crucial clue for helping the video indexing. In this paper, a new method is presented to extract both superimposed and embedded scene texts in a freeze-frame of news video. The algorithm is summarized in the following three steps. For the first step, a color image is converted into a gray-level image and applies contrast stretching to enhance the contrast of the input image. Then, a modified local adaptive thresholding is applied to the contrast-stretched image. The second step is divided into three processes: eliminating text-like components by applying erosion, dilation, and (OpenClose+CloseOpen)/2 morphological operations, maintaining text components using (OpenClose+CloseOpen)/2 operation with a new Geo-correction method, and subtracting two result images for eliminating false-positive components further. In the third filtering step, the characteristics of each component such as the ratio of the number of pixels in each candidate component to the number of its boundary pixels and the ratio of the minor to the major axis of each bounding box are used. Acceptable results have been obtained using the proposed method on 300 news images with a recognition rate of 93.6%. Also, my method indicates a good performance on all the various kinds of images by adjusting the size of the structuring element.

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.