• Title, Summary, Keyword: Collagen

Search Result 2,560, Processing Time 0.043 seconds

Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts

  • Subramaniyan, Sivakumar Allur;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.392-401
    • /
    • 2017
  • Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

Comparison of Three Commercial Collagen Mixtures: Quality Characteristics of Marinated Pork Loin Ham

  • Choe, Juhui;Kim, Hack-Youn
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.345-353
    • /
    • 2019
  • Various commercial collagen mixtures aimed at improving the quality of meat products are available, but the optimal composition is unclear. This study aimed to compare the functional properties, including physicochemical characteristics and lipid oxidative stability, of loin ham marinated with three commercial collagen mixtures sold as food additives. The addition of collagen mixtures led to significant increases in the moisture content, water holding capacity (WHC), cooking yield, and instrumental tenderness, regardless of the type of collagen mixture. In particular, meat samples containing collagen mixture C showed the highest (p<0.05) WHC and tenderness among all groups. Furthermore, collagen mixture B induced increases (p<0.05) in pH values in both raw and cooked samples. The $a^*$ values of samples with collagen mixtures were lower (p<0.05) than those of samples without collagen mixtures. All collagen mixtures effectively improved oxidative stability during 7 days of storage at $4^{\circ}C$. The samples containing collagen mixture B had the lowest lipid oxidation (p<0.05) among groups. These results indicated that collagen mixture C could be used in injection brine to enhance the quality characteristics of meat products, particularly the WHC and tenderness. Collagen mixture A could be used for meat products with high fat contents based on its ability to improve lipid oxidative stability during long-term storage.

Changes in Hydrophobic Surface of Collagen by Chondroitin Sulfate : Fluorescence Intensity Measurements with Bis-ANS as the Probe

  • Kim, Sung-Koo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.446-453
    • /
    • 1995
  • The improtant components of extracellular matrix(ECM) are collagen and chondroitin sulfate. The hydrophobic surface of collagen is one of the determining factors of diameter of collagen fiber and also is closely related to the aging phenomena. The controlling mechanism of the diameter of collagen fiber influenced by the interaction with chondroitin sulfate was evaluated using bis-ANS as a hydrophobic probe. Hydrophobic surface area of collagen molecule shielded by chondroitin sulfate was evaluated. Relative fluorescence intensity of collagen in thepresence of chondroitin sulfate was measured using bis-ANS as a hydrophobic probe. The fluorescence intensity decreased with the increase in chondroitin sulfate up to 3.8 chondroitin sulfate/collagen(mole/mole). Further increase in the ratio of chondroitin sulfate to collagen did not change the fluorescence intensity. Similar changes in the relative fluorescence intensity were observed for both rat tail and lathyrific rat skin collagen. The fluorescence intensity indicated by the binding between bis-ANS and hydrophobic sites of collagen was pH dependent, and the shielding effect of collagen-chondroitin sulfate interaction could not be detected at pH above 6.0. This is probably due to the charge repulsions caused by negative charged collagen molecules at higher pH.

  • PDF

The Flow Behavior of Skin Collagen (피부조직 콜라겐의 유동 특성)

  • Kim, Young-Ho;Park, Eun-Ji;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.576-581
    • /
    • 1995
  • To obtain the basic information for the effective use of collagen, the flow behavior of collagen extracted from skin tissue was studied. The viscosity of collagen varied with sex, age and the kinds of collagen by extraction method. Regardless of the kinds of collagen, the viscosity of collagen extracted from $6{\sim}12$ week old rat was relatively high. In case of the same age, the viscosity showed higher in female than in male rat and in acid soluble collagen than in insoluble collagen. The solution of the collagen showed the characteristics of Bingham plastic and thixotropic fluid, and the viscosity varied distinctly with temperature, pH, ethanol concentration and collagen concentration. As collagen concentration increased to 6%, the consistency of acid soluble- and insoluble collagen showed a tendency to increase linearly(r = 0.972 for acid soluble collagen, r = 0.957 for insoluble collagen). In that range of collagen concentration, the increasing velocity of consistency was higher in acid soluble collagen than in insoluble collagen. The consistency of collagen solution was decreased according to temperature rising. In case of acid soluble collagen, the consistency is decreased abruptly between $30{\sim}40^{\circ}C$. According to pH variation, the consistency of acid soluble collagen showed biphasic phenomenon, though the consistency of insoluble collagen was found not to be influenced by pH. The consistency of acid soluble- and insoluble collagen according to ethanol concentration showed high between $40{\sim}60%$ of ethanol concentration.

  • PDF

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development

  • Irawan, Vincent;Sung, Tzu-Cheng;Higuchi, Akon;Ikoma, Toshiyuki
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.673-697
    • /
    • 2018
  • BACKGROUND: Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS: Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS: Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION: Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.

The Durability of Elastin-Incorporated Collagen Matrix for Dermal Substitute in Vitro Condition (In vitro 환경에서 엘라스틴을 혼합한 콜라겐 진피 지지체의 내구성)

  • Lew, Dae Hyun;Hong, Jong Won;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: Since the report of artificial dermis manufacturing method using collagen by Yannas in 1980, collagen has been effectively used as dermal substitute with its merits such as, lower antigeneicity, controllable biodegradation rate, and minimal inflammatory cytotoxic properties in the dermal tissue engineering field. However, weak mechanical durability was the main drawback of collagen dermal substitute. To improve its stability, mechanical or chemical cross-linking was used. Despite of such process, its clinical use was restricted due to weak durability. To improve the durability of collagen matrix, we designed elastin-incorporated collagen matrix and compared its durability with conventional collagen matrix. Methods: 15mm diameter with 4mm thick collagen dermal matrix was made according to Yannas protocol by mixing 0.5% bovine collagen and chondroitin-6-sulfate followed by degassing, freeze drying, dehydrodermal cross-linking and chemical cross-linking procedure. In elastin incorporated collagen matrix, same procedure was performed by mixing elastin to previous collagen matrix in 4:1 ratio(collagen 80% elastin 20%). In comparison of the two dermal matrix in vitro tests, matrix contracture rate, strain, tensile strength, was measured and stiffness was calculated from comparative analysis. Results: In terms of matrix contracture, the elastin-incorperated added collagen dermis matrix showed 1.2 times more contraction compared to conventional collagen matrix. However, tensile strength showed 1.6 times and stiffness showed 1.6 times increase in elastin-incorporated matrix. Conclusion: Elastin incorperated collagen matrix manufactured by our team showed increased durability due to improvement in tensile strength and stiffness compared to previous collagen matrix($Integra^{(R)}$).

The Effect of Collagen Supplementation from Pork Skin on Serum Collagen, Serum Sex Steroid Hormone, Serum Lipid and Skin Crack in Korean Middle-aged Women (돈피 추출 콜라겐 보충 식이가 중년 여성의 혈중 콜라겐, 성호르몬, 지질대사 및 피부 갈라짐에 미치는 영향)

  • Han, Chae-Jeong;Kang, Sang-Mo
    • Korean Journal of Community Nutrition
    • /
    • v.13 no.6
    • /
    • pp.912-921
    • /
    • 2008
  • This study was performed to examine if the effects of collagen supplementation from pork skin could improve the sex steroid hormone, serum lipid and skin crack in Korean middle-aged women. Middle-aged women (40-55 years) who were not diagnosed with any type of disease were included in this study and thirty subjects were randomly assigned to a control group (n = 15) or a collagen supplemented group (n = 15). The collagen supplemented group ingested collagen flour 2 g, 3 times a day for 12 weeks. We measured serum collagen, estrogen, estradiol, estriol, progesterone, total cholesterol, triglyceride, HDL-cholesterol and LDL-cholesterol concentration. The collagen supplementation group had significantly increased serum collagen (p < 0.05) compared with the control group. In addition, skin crack was improved. But, there were no differences for sex steroid hormone and lipid profile in control and collagen supplemented groups. The result of the present study demonstrated that supplementation of 6 g collagen per day for 12 weeks can give beneficial effects on skin crack reduction and serum collagen concentration.

Quantitative Changes of Collagen and Malonedialdehyde as the Parameters of Skin Alteration (피부노화의 지표가 되는 collagen과 malonedialdehyde의 정량적인 변화)

  • 김기영;이재형;진주영;양시용
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.135-140
    • /
    • 2004
  • Anti-skin aging agent could be have an inhibition effect of ROS production as well as fragmentation and change of collagen cross linkage in collagen molecule. For the monitoring of lipid peroxidation and collagen degradation, the skin of young and old rats were incised and observed 7 days. In the result, the wound closure was observed in the skin from 10 of 11 young rats and in 8 of 11 old rats. And the longer wound length but shorter wound closure, weaker collagen density and thicker epidermis were observed in old rats than in young rats. The level of hydroxyproline as a parameter of collagen synthesis and MDA as a parameter of lipid peroxidation was lower in old group than in young group. The cyst and lacuna between collagen bundle and fibroblast were observed in old rats in contrast to young rats. So that we propose that MDA and hydroxyproline could be used for monitoring of anti-skin aging agent.

Preparation and Availability Analysis of Collagen Peptides Obtained in Fish Scale (어류비늘에서 추출한 콜라겐펩타이드의 제조 및 유효성 분석)

  • Lee, Mi-Jin;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.457-466
    • /
    • 2009
  • This study is manufacturing method and analysis of feasibility about collagen peptide from fish scale. This is processed by enzyme hydrolysis, isolating and refining etc. The results of analysis of nutritional composition showed protein content of collagen peptide. In the analysis of constitutive amino acids, the ratio of contents of hydroxyproline and glycine, the characteristics of collagen peptides appeared similar and the contents of glutamic acid and aspartic acid which are involved in protein metabolism. As a result of measurement of total polyphenol content and total flavonoid, it showed that collagen peptide had more contents generally, and the effect of bioactivity of pig-skin collagen peptide appeared higher although different kinds of scale collagen peptide showed a little DPPH radical scavenging ability, total antioxidant capacity by ABTS, ACE inhibitory.

Optical-effect Analysis of Nanoscale Collagen Fibers

  • Lee, Myoung-Hee;Kim, Young Chul
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • To understand the cause of the high light transmittance of the human eye, the optical effects of the collagen fibers of the stroma layer, which constitute the majority of the cornea, were analyzed. These collagen fibers, approximately 20 nm in diameter, have a regular arrangement. Accordingly, the optical properties of the collagen fibers and the fiber layer were analyzed by simulation. A standing wave was formed in the incident space by the overlapping incident light and the light reflected by the plate. In addition, it was confirmed that when the collagen fibers are arranged in a layer, the light transmittance periodically changes, depending on the number of fiber layers. The standing wave was formed in the incident space, and the light's intensity distribution was changed by the nanoscale collagen fibers in the section with the collagen layer, which affected the transmittance. To explain this phenomenon, the collagen fiber was defined as a second light source, and an attempt was made to describe the simulation results in terms of overlap of the incident light with the light emitted from the collagen fiber.