• Title, Summary, Keyword: Co-Precipitation

Search Result 843, Processing Time 0.049 seconds

Precipitation Change in Korea due to Atmospheric $CO_2$ Increase (대기중 $CO_2$ 증가에 따른 한반도 강수량 변화)

  • 오재호;홍성길
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.143-157
    • /
    • 1995
  • A precipitation change in Korea due to atmospheric $CO_2$ doubling has been estimated with a mixed method(Robinson and Finkelstein, 1991) to represent regional precipitation distribution from the simulated precipitation data by three GCM(general circulation model) (CCC, UI, and GFDL GCM) experiments. As a result of this analysis, the precipitation change by atmospheric $CO_2$ doubling can be summarized as follows: The precipitation increases as much as 25mm/yr during spring season and more than 50mm/yr during summer and autumn. However, it decreases as much as 13mm/yr during winter. In terms of percentage with respect to current precipitation climatology, we may have more rain as much as 10%, 13% and 24%, respectively, for spring, summer and autumn than current precipitation. However, we may have less winter precipitation than current climatological average.

  • PDF

Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders (전구체 공침 온도가 LiNi1/3Co1/3Mn1/3O2 분말의 특성에 미치는 영향)

  • Choi, Woonghee;Kang, Chan Hyoung
    • Journal of Korean Powder Metallurgy Institute
    • /
    • v.23 no.4
    • /
    • pp.287-296
    • /
    • 2016
  • $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders have been synthesized in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH using $NH_4OH$ as a chelating agent. The co-precipitation temperature is varied in the range of $30-80^{\circ}C$. Calcination of the prepared precursors with $Li_2CO_3$ for 8 h at $1000^{\circ}C$ in air results in Li $Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders. Two kinds of obtained powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analyzer, and tap density measurements. The co-precipitation temperature does not differentiate the XRD patterns of precursors as well as their final powders. Precursor powders are spherical and dense, consisting of numerous acicular or flaky primary particles. The precursors obtained at 70 and $80^{\circ}C$ possess bigger primary particles having more irregular shapes than those at lower temperatures. This is related to the lower tap density measured for the former. The final powders show a similar tendency in terms of primary particle shape and tap density. Electrochemical characterization shows that the initial charge/discharge capacities and cycle life of final powders from the precursors obtained at 70 and $80^{\circ}C$ are inferior to those at $50^{\circ}C$. It is concluded that the optimum co-precipitation temperature is around $50^{\circ}C$.

Microstructure of Precipitation Strengthened Ll2-type Co3Ti Intermetallic Compound

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.694-698
    • /
    • 2009
  • The $Co_{3}Ti$ phase hardens appreciably by the fine precipitation of disordered fcc Co-rich phase upon aging after quenching from solution annealing temperature. Transmission electron microscope (TEM) observations revealed that the precipitates are platelet in shape, lying nearly parallel to the {100} planes of the $Ll_{2}$-ordered matrix, and perfectly coherent with the matrix lattice at the beginning of aging. The high temperature strength increases appreciably with the fine precipitation of disordered Co-rich phase over the whole temperature range investigated. TEM observations of the under-aged and deformed alloys revealed that superdislocations are pinned by precipitates indicating an attractive interaction between dislocations and precipitates. In the over-aged state, thin twins are introduced in the fcc Co-rich precipitates during deformation.

Reactivity Test of Ni-based Catalysts Prepared by Various Preparation Methods for Production of Synthetic Nature Gas (합성천연가스 생산을 위한 고효율 Ni계 촉매의 제법에 따른 촉매의 반응특성 조사)

  • Jang, Seon-Ki;Park, No-Kuk;Lee, Tae-Jin;Koh, Dong-Jun;Lim, Hyo-Jun;Byun, Chang-Dae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • In this study, the Ni-based catalysts for the production of synthetic natural gas were prepared by various preparation methods such as the co-precipitation, precipitation, impregnation and physical mixing methods. The ranges of the reaction conditions were the temperatures of 250~$350^{\circ}C$, $H_2$/CO mole ratio of 3.0, the pressures of 1 atm and the space velocity of 20000 $ml/g_{-cat{\cdot}}{\cdot}h$. It was found that the catalyst prepared by precipitation method had higher CO conversion than the catalyst prepared by co-precipitation method. While the catalyst prepared by precipitation method had the formation of NiO structure, the catalyst prepared by co-precipitation method had the formation of $NiAl_2O_4$ structure. It was confirmed that Ni-based catalyst prepared by the physical mixing method had the lowest CO conversion because it was deactivated by the production of $Ni_3C$ during the methanation. As a result, it was shown clearly that Ni-based catalysts prepared by impregnation method expressed the highest catalytic activity in CO methanation.

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent (암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향)

  • You, Jong Kyun;Park, Ho Seok;Hong, Won Hi;Park, Jongkee;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.

Precipitation behaviors of Cs and Re(/Tc) by NaTPB and TPPCl from a simulated fission products-$(Na_2CO_3-NaHCO_3)-H_2O_2$ solution (모의 FP-$(Na_2CO_3-NaHCO_3)-H_2O_2$ 용액으로부터 NaTPB 및 TPPCl에 의한 Cs 및 Re(/Tc)의 침전 거동)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • In this study, the removal of Cs and Tc from a simulated fission products (FP) solution which were co-dissolved with U during the oxidative-dissolution of spent fuel in a mixed carbonate solution of $(Na_2CO_3-NaHCO_3)-H_2O_2$ was investigated by using a selective precipitation method. As Cs and Tc might cause an unstable behavior due to the high decay heat emission of Cs as well as the fast migration of Tc when disposed of underground, it is one of the important issues to removal them in views of the increase of disposal safety. The precipitation of Cs and Re (as a surrogate for Tc) was examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylphosponium chloride (TPPCl), respectively. Precipitation of Cs by NaTPB and that of Re by TPPCl were completed within 5 minutes. Their precipitation rates were not influenced so much by the temperature and stirring speed even if they were increased by up to $50^{\circ}C$ and 1,000 rpm. However, the pH of the solution was found to have a great influence on the precipitation with NaTPB and TPPCl. Since Mo tends to co-precipitate with Re at a lower pH, especially, it was effective that a selective precipitation of Re by TPPCl was carried out at pH of above 9 without co-precipitation of Mo and Re. Over 99% of Cs was precipitated when the ratio of [NaTPB]/[Cs]>1 and more than 99% of Re, likewise, was precipitated when the ratio of [TPPCl]/[Re]>1.

Decontamination of radioactive wastewater by two-staged chemical precipitation

  • Osmanlioglu, Ahmet E.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.886-889
    • /
    • 2018
  • This article presented two-staged chemical precipitation for radioactive wastewater decontamination by using chemical agents. The total amount of radioactive wastewater was $35m^3$, and main radionuclides were Cs-137, Cs-134, and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17, and 9 Bq/L for Cs-137, Cs-134 and Co-60, respectively. Potassium ferrocyanide, nickel nitrate, and ferrum nitrate were selected as chemical agents at high pH levels 8-10 according to the laboratory jar tests. After the process, radioactivity was precipitated as sludge at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 66.5, 8.6, and 9 for Cs-137, Cs-134, and Co-60, respectively. By using the potassium ferrocyanide, about 98% of the Cs-137 was removed at pH 9. At the bottom of the tank, radioactive sludge amount from both stages was totally $0.98m^3$. It was transferred by sludge pumps to cementation unit for solidification. By chemical processing, 97.2% of volume reduction was achieved. The potassium ferrocyanide in two-staged precipitation method could be used successfully in large-scale applications for removal of Cs-137, Cs-134, and Co-60.

Development of Auto-Empting Type Weighing Precipitation Gauge and Performance Test on Rainfall Measurement (자동배수형 무게식 강수량계 개발 및 강우량 측정 성능검사)

  • Kim, Sang-Jo;Son, Top
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.279-285
    • /
    • 2012
  • The weighing precipitation gauge with auto-empting capability was developed in the R&D project organized by the Research Agency for Climate Science (RACS) and supported by the Korea Meteorological Administration (KMA). This project was initiated in line with the KMA's plan executed since 2010 to introduce the weighing precipitation gauges partly into of their Automatic Weather Station (AWS) network in order to upgrade the quality of precipitation data. The innovative feature of this research is that the auto-empting in weighing precipitation gauge is realized by abrupt rotation of receiving container. The prototype was tested in compliance with the relevant standards of KMA. The results of performance test on rainfall measurement in laboratory verified that the accuracies for 20 mm and 100 mm reference rainfall amount were 0.1 mm and 0.4 mm, respectively in both conditions of auto-empting and no-empting. During the rotation of container for auto-empting, the data was extrapolated smoothly by applying the same precipitation intensity of the previous 10 sec. Consequently, it was found that the auto-empting precipitation gauge developed in this research is quite enough to be used for the operational purpose of accurate measurement with 0.1 mm resolution, regardless of the precipitation intensity.

Soil CO2 efflux in a warm-temperature and sub-alpine forest in Jeju, South Korea

  • Jeong, Heon-Mo;Jang, Rae-Ha;Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.6
    • /
    • pp.165-172
    • /
    • 2017
  • Background: This study investigated the temporal variation in soil $CO_2$ efflux and its relationship with soil temperature and precipitation in the Quercus glauca and Abies koreana forests in Jeju Island, South Korea, from August 2010 to December 2012. Q. glauca and A. koreana forests are typical vegetation of warm-temperate evergreen forest zone and sub-alpine coniferous forest zone, respectively, in Jeju island. Results: The mean soil $CO_2$ efflux of Q. glauca forest was $0.7g\;CO_2\;m^{-2}\;h^{-1}$ at $14.3^{\circ}C$ and that of A. koreana forest was $0.4g\;CO_2\;m^{-2}\;h^{-1}$ at $6.8^{\circ}C$. The cumulative annual soil $CO_2$ efflux of Q. glauca and A. koreana forests was 54.2 and $34.2t\;CO_2\;ha^{-1}$, respectively. Total accumulated soil carbon efflux in Q. glauca and A. koreana forests was 29.5 and $18.7t\;C\;ha^{-1}$ for 2 years, respectively. The relationship between soil $CO_2$ efflux and soil temperate at 10 cm depth was highly significant in the Q. glauca ($r^2=0.853$) and A. koreana forests ($r^2=0.842$). Soil temperature was the main controlling factor over $CO_2$ efflux during most of the study period. Also, precipitation may affect soil $CO_2$ efflux that appeared to be an important factor controlling the efflux rate. Conclusions: Soil $CO_2$ efflux was affected by soil temperature as the dominant control and moisture as the limiting factor. The difference of soil $CO_2$ efflux between of Q. glauca and A. koreana forests was induced by soil temperature to altitude and regional precipitation.

Spatial Distribution Modeling of Daily Rainfall Using Co-Kriging Method (Co-kriging 기법을 이용한 일강우량 공간분포 모델링)

  • Hwang Sye-Woon;Park Seung-Woo;Jang Min-Won;Cho Young-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8
    • /
    • pp.669-676
    • /
    • 2006
  • Hydrological factors, especially the spatial distribution of interpretation on precipitation is often topic of interest in studying of water resource. The popular methods such as Thiessen method, inverse distance method, and isohyetal method are limited in calculating the spatial continuity and geographical characteristics. This study was intended to overcome those limitations with improved method that will yield higher accuracy. The monthly and yearly precipitation data were produced and compared with the observed daily precipitation to find correlation between them. They were then used as secondary variables in Co-kriging method, and the result was compared with the outcome of existing methods like inverse distance method and kriging method. The comparison of the data showed that the daily precipitation had high correlation with corresponding year's average monthly amounts of precipitation and the observed average monthly amounts of precipitation. Then the result from the application of these data for a Co-kriging method confirmed increased accuracy in the modeling of spatial distribution of precipitation, thus indirectly reducing inconsistency of the spatial distribution of hydrological factors other than precipitation.